Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru
Descripción del Articulo
Streamflow forecasting at short horizons is vital for the management of water resources. However, the streamflow behaviour is non-linear and not stationary. To address this challenge, artificial intelligence techniques have been used to increase accuracy. Additionally, signal decomposition technique...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2470 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2470 https://doi.org/10.1109/EIRCON51178.2020.9254035 |
Nivel de acceso: | acceso abierto |
Materia: | streamflow forecasting LSTM mode decomposition signal http://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | Streamflow forecasting at short horizons is vital for the management of water resources. However, the streamflow behaviour is non-linear and not stationary. To address this challenge, artificial intelligence techniques have been used to increase accuracy. Additionally, signal decomposition techniques such as empirical mode decomposition, ensemble empirical mode decomposition, and variational mode decomposition, have been applied in different fields as a pre-processing stage prior to modelling to improve forecasting. This study evaluates the effect of the aforementioned decomposition techniques used with a recurrent neural network called long short-Term memory to increase the precision of the daily prediction of the Chira river streamflow in northern Peru, characterized by a special dynamic due to a strong seasonal behavior and the influence of the El Niño-Southern Oscillation (ENSO). © 2020 IEEE. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).