Exportación Completada — 

Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru

Descripción del Articulo

Streamflow forecasting at short horizons is vital for the management of water resources. However, the streamflow behaviour is non-linear and not stationary. To address this challenge, artificial intelligence techniques have been used to increase accuracy. Additionally, signal decomposition technique...

Descripción completa

Detalles Bibliográficos
Autores: La Rosa Lama G., Sanchez I.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2470
Enlace del recurso:https://hdl.handle.net/20.500.12390/2470
https://doi.org/10.1109/EIRCON51178.2020.9254035
Nivel de acceso:acceso abierto
Materia:streamflow forecasting
LSTM
mode decomposition signal
http://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Streamflow forecasting at short horizons is vital for the management of water resources. However, the streamflow behaviour is non-linear and not stationary. To address this challenge, artificial intelligence techniques have been used to increase accuracy. Additionally, signal decomposition techniques such as empirical mode decomposition, ensemble empirical mode decomposition, and variational mode decomposition, have been applied in different fields as a pre-processing stage prior to modelling to improve forecasting. This study evaluates the effect of the aforementioned decomposition techniques used with a recurrent neural network called long short-Term memory to increase the precision of the daily prediction of the Chira river streamflow in northern Peru, characterized by a special dynamic due to a strong seasonal behavior and the influence of the El Niño-Southern Oscillation (ENSO). © 2020 IEEE.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).