Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru
Descripción del Articulo
Streamflow forecasting at short horizons is vital for the management of water resources. However, the streamflow behaviour is non-linear and not stationary. To address this challenge, artificial intelligence techniques have been used to increase accuracy. Additionally, signal decomposition technique...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2470 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2470 https://doi.org/10.1109/EIRCON51178.2020.9254035 |
Nivel de acceso: | acceso abierto |
Materia: | streamflow forecasting LSTM mode decomposition signal http://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
CONC_93ef8348ed6500c35a9cdf232ad2fb05 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2470 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru |
title |
Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru |
spellingShingle |
Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru La Rosa Lama G. streamflow forecasting LSTM mode decomposition signal http://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru |
title_full |
Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru |
title_fullStr |
Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru |
title_full_unstemmed |
Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru |
title_sort |
Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru |
author |
La Rosa Lama G. |
author_facet |
La Rosa Lama G. Sanchez I. |
author_role |
author |
author2 |
Sanchez I. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
La Rosa Lama G. Sanchez I. |
dc.subject.none.fl_str_mv |
streamflow forecasting |
topic |
streamflow forecasting LSTM mode decomposition signal http://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.es_PE.fl_str_mv |
LSTM mode decomposition signal |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
Streamflow forecasting at short horizons is vital for the management of water resources. However, the streamflow behaviour is non-linear and not stationary. To address this challenge, artificial intelligence techniques have been used to increase accuracy. Additionally, signal decomposition techniques such as empirical mode decomposition, ensemble empirical mode decomposition, and variational mode decomposition, have been applied in different fields as a pre-processing stage prior to modelling to improve forecasting. This study evaluates the effect of the aforementioned decomposition techniques used with a recurrent neural network called long short-Term memory to increase the precision of the daily prediction of the Chira river streamflow in northern Peru, characterized by a special dynamic due to a strong seasonal behavior and the influence of the El Niño-Southern Oscillation (ENSO). © 2020 IEEE. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2470 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/EIRCON51178.2020.9254035 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85097816504 |
url |
https://hdl.handle.net/20.500.12390/2470 https://doi.org/10.1109/EIRCON51178.2020.9254035 |
identifier_str_mv |
2-s2.0-85097816504 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175740209233920 |
spelling |
Publicationrp06266600rp06267600La Rosa Lama G.Sanchez I.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2470https://doi.org/10.1109/EIRCON51178.2020.92540352-s2.0-85097816504Streamflow forecasting at short horizons is vital for the management of water resources. However, the streamflow behaviour is non-linear and not stationary. To address this challenge, artificial intelligence techniques have been used to increase accuracy. Additionally, signal decomposition techniques such as empirical mode decomposition, ensemble empirical mode decomposition, and variational mode decomposition, have been applied in different fields as a pre-processing stage prior to modelling to improve forecasting. This study evaluates the effect of the aforementioned decomposition techniques used with a recurrent neural network called long short-Term memory to increase the precision of the daily prediction of the Chira river streamflow in northern Peru, characterized by a special dynamic due to a strong seasonal behavior and the influence of the El Niño-Southern Oscillation (ENSO). © 2020 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020info:eu-repo/semantics/openAccessstreamflow forecastingLSTM-1mode decomposition signal-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peruinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2470oai:repositorio.concytec.gob.pe:20.500.12390/24702024-05-30 16:08:31.03http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="c51acae2-109b-459a-ac6b-968b4c194e6c"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru</Title> <PublishedIn> <Publication> <Title>Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/EIRCON51178.2020.9254035</DOI> <SCP-Number>2-s2.0-85097816504</SCP-Number> <Authors> <Author> <DisplayName>La Rosa Lama G.</DisplayName> <Person id="rp06266" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sanchez I.</DisplayName> <Person id="rp06267" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>streamflow forecasting</Keyword> <Keyword>LSTM</Keyword> <Keyword>mode decomposition signal</Keyword> <Abstract>Streamflow forecasting at short horizons is vital for the management of water resources. However, the streamflow behaviour is non-linear and not stationary. To address this challenge, artificial intelligence techniques have been used to increase accuracy. Additionally, signal decomposition techniques such as empirical mode decomposition, ensemble empirical mode decomposition, and variational mode decomposition, have been applied in different fields as a pre-processing stage prior to modelling to improve forecasting. This study evaluates the effect of the aforementioned decomposition techniques used with a recurrent neural network called long short-Term memory to increase the precision of the daily prediction of the Chira river streamflow in northern Peru, characterized by a special dynamic due to a strong seasonal behavior and the influence of the El Niño-Southern Oscillation (ENSO). © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.461011 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).