Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru

Descripción del Articulo

Streamflow forecasting at short horizons is vital for the management of water resources. However, the streamflow behaviour is non-linear and not stationary. To address this challenge, artificial intelligence techniques have been used to increase accuracy. Additionally, signal decomposition technique...

Descripción completa

Detalles Bibliográficos
Autores: La Rosa Lama G., Sanchez I.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2470
Enlace del recurso:https://hdl.handle.net/20.500.12390/2470
https://doi.org/10.1109/EIRCON51178.2020.9254035
Nivel de acceso:acceso abierto
Materia:streamflow forecasting
LSTM
mode decomposition signal
http://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_93ef8348ed6500c35a9cdf232ad2fb05
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2470
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru
title Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru
spellingShingle Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru
La Rosa Lama G.
streamflow forecasting
LSTM
mode decomposition signal
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru
title_full Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru
title_fullStr Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru
title_full_unstemmed Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru
title_sort Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru
author La Rosa Lama G.
author_facet La Rosa Lama G.
Sanchez I.
author_role author
author2 Sanchez I.
author2_role author
dc.contributor.author.fl_str_mv La Rosa Lama G.
Sanchez I.
dc.subject.none.fl_str_mv streamflow forecasting
topic streamflow forecasting
LSTM
mode decomposition signal
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv LSTM
mode decomposition signal
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description Streamflow forecasting at short horizons is vital for the management of water resources. However, the streamflow behaviour is non-linear and not stationary. To address this challenge, artificial intelligence techniques have been used to increase accuracy. Additionally, signal decomposition techniques such as empirical mode decomposition, ensemble empirical mode decomposition, and variational mode decomposition, have been applied in different fields as a pre-processing stage prior to modelling to improve forecasting. This study evaluates the effect of the aforementioned decomposition techniques used with a recurrent neural network called long short-Term memory to increase the precision of the daily prediction of the Chira river streamflow in northern Peru, characterized by a special dynamic due to a strong seasonal behavior and the influence of the El Niño-Southern Oscillation (ENSO). © 2020 IEEE.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2470
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/EIRCON51178.2020.9254035
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85097816504
url https://hdl.handle.net/20.500.12390/2470
https://doi.org/10.1109/EIRCON51178.2020.9254035
identifier_str_mv 2-s2.0-85097816504
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175740209233920
spelling Publicationrp06266600rp06267600La Rosa Lama G.Sanchez I.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2470https://doi.org/10.1109/EIRCON51178.2020.92540352-s2.0-85097816504Streamflow forecasting at short horizons is vital for the management of water resources. However, the streamflow behaviour is non-linear and not stationary. To address this challenge, artificial intelligence techniques have been used to increase accuracy. Additionally, signal decomposition techniques such as empirical mode decomposition, ensemble empirical mode decomposition, and variational mode decomposition, have been applied in different fields as a pre-processing stage prior to modelling to improve forecasting. This study evaluates the effect of the aforementioned decomposition techniques used with a recurrent neural network called long short-Term memory to increase the precision of the daily prediction of the Chira river streamflow in northern Peru, characterized by a special dynamic due to a strong seasonal behavior and the influence of the El Niño-Southern Oscillation (ENSO). © 2020 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020info:eu-repo/semantics/openAccessstreamflow forecastingLSTM-1mode decomposition signal-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peruinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2470oai:repositorio.concytec.gob.pe:20.500.12390/24702024-05-30 16:08:31.03http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="c51acae2-109b-459a-ac6b-968b4c194e6c"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Hybrid models based on mode decomposition and recurrent neural networks for streamflow forecasting in the Chira river in Peru</Title> <PublishedIn> <Publication> <Title>Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/EIRCON51178.2020.9254035</DOI> <SCP-Number>2-s2.0-85097816504</SCP-Number> <Authors> <Author> <DisplayName>La Rosa Lama G.</DisplayName> <Person id="rp06266" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sanchez I.</DisplayName> <Person id="rp06267" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>streamflow forecasting</Keyword> <Keyword>LSTM</Keyword> <Keyword>mode decomposition signal</Keyword> <Abstract>Streamflow forecasting at short horizons is vital for the management of water resources. However, the streamflow behaviour is non-linear and not stationary. To address this challenge, artificial intelligence techniques have been used to increase accuracy. Additionally, signal decomposition techniques such as empirical mode decomposition, ensemble empirical mode decomposition, and variational mode decomposition, have been applied in different fields as a pre-processing stage prior to modelling to improve forecasting. This study evaluates the effect of the aforementioned decomposition techniques used with a recurrent neural network called long short-Term memory to increase the precision of the daily prediction of the Chira river streamflow in northern Peru, characterized by a special dynamic due to a strong seasonal behavior and the influence of the El Niño-Southern Oscillation (ENSO). © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.461011
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).