Hodge Theory and Electromagnetism

Descripción del Articulo

Let M be a compact domain in R3. The Hodge Decomposition Theorem yields a decomposition of the space of vector elds on M into ve mutually orthogonal subspaces that encode geometric and topological features of M. This decomposition is useful in many branches of mathematics, physics, and engineering....

Descripción completa

Detalles Bibliográficos
Autores: Juárez, Omar, Lachira, Martín
Formato: documento de trabajo
Fecha de Publicación:2020
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/173522
Enlace del recurso:http://repositorio.pucp.edu.pe/index/handle/123456789/173522
Nivel de acceso:acceso abierto
Materia:Hodge decomposition
Hodge theory
Di erential forms
Smooth manifolds
Maxwell equations
http://purl.org/pe-repo/ocde/ford#5.09.01
Descripción
Sumario:Let M be a compact domain in R3. The Hodge Decomposition Theorem yields a decomposition of the space of vector elds on M into ve mutually orthogonal subspaces that encode geometric and topological features of M. This decomposition is useful in many branches of mathematics, physics, and engineering. In this paper, we study the general version of this theorem, valid for di erential forms on smooth, compact, oriented manifolds with boundary, in any dimension, and deduce from it the particular ve-term decomposition for compact domains in 3-space. We do this by using basic notions from multivariable calculus, linear algebra, di erential forms, and algebraic topology, following the article [CDTG], by Cantarella, DeTurck and Gluck, and the book of Schwarz [S]. Furthermore, we present some applications of the notions developed in this paper to the formulation of Maxwell's equations and to the graphical representations of di erential forms in Rn.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).