Hodge Theory and Electromagnetism

Descripción del Articulo

Let M be a compact domain in R3. The Hodge Decomposition Theorem yields a decomposition of the space of vector elds on M into ve mutually orthogonal subspaces that encode geometric and topological features of M. This decomposition is useful in many branches of mathematics, physics, and engineering....

Descripción completa

Detalles Bibliográficos
Autores: Juárez, Omar, Lachira, Martín
Formato: documento de trabajo
Fecha de Publicación:2020
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/173522
Enlace del recurso:http://repositorio.pucp.edu.pe/index/handle/123456789/173522
Nivel de acceso:acceso abierto
Materia:Hodge decomposition
Hodge theory
Di erential forms
Smooth manifolds
Maxwell equations
http://purl.org/pe-repo/ocde/ford#5.09.01
id RPUC_642fe1e057a6243f874dbd0c2c9ebd87
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/173522
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
dc.title.es_ES.fl_str_mv Hodge Theory and Electromagnetism
title Hodge Theory and Electromagnetism
spellingShingle Hodge Theory and Electromagnetism
Juárez, Omar
Hodge decomposition
Hodge theory
Di erential forms
Smooth manifolds
Maxwell equations
http://purl.org/pe-repo/ocde/ford#5.09.01
title_short Hodge Theory and Electromagnetism
title_full Hodge Theory and Electromagnetism
title_fullStr Hodge Theory and Electromagnetism
title_full_unstemmed Hodge Theory and Electromagnetism
title_sort Hodge Theory and Electromagnetism
author Juárez, Omar
author_facet Juárez, Omar
Lachira, Martín
author_role author
author2 Lachira, Martín
author2_role author
dc.contributor.author.fl_str_mv Juárez, Omar
Lachira, Martín
dc.subject.es_ES.fl_str_mv Hodge decomposition
Hodge theory
Di erential forms
Smooth manifolds
Maxwell equations
topic Hodge decomposition
Hodge theory
Di erential forms
Smooth manifolds
Maxwell equations
http://purl.org/pe-repo/ocde/ford#5.09.01
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#5.09.01
description Let M be a compact domain in R3. The Hodge Decomposition Theorem yields a decomposition of the space of vector elds on M into ve mutually orthogonal subspaces that encode geometric and topological features of M. This decomposition is useful in many branches of mathematics, physics, and engineering. In this paper, we study the general version of this theorem, valid for di erential forms on smooth, compact, oriented manifolds with boundary, in any dimension, and deduce from it the particular ve-term decomposition for compact domains in 3-space. We do this by using basic notions from multivariable calculus, linear algebra, di erential forms, and algebraic topology, following the article [CDTG], by Cantarella, DeTurck and Gluck, and the book of Schwarz [S]. Furthermore, we present some applications of the notions developed in this paper to the formulation of Maxwell's equations and to the graphical representations of di erential forms in Rn.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-12-16T02:17:52Z
dc.date.available.none.fl_str_mv 2020-12-16T02:17:52Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.other.none.fl_str_mv Documento de trabajo
format workingPaper
dc.identifier.uri.none.fl_str_mv http://repositorio.pucp.edu.pe/index/handle/123456789/173522
url http://repositorio.pucp.edu.pe/index/handle/123456789/173522
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad del Perú. Vicerrectorado de Investigación. Dirección de Gestión de la Investigación
dc.publisher.country.none.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
bitstream.url.fl_str_mv https://repositorio.pucp.edu.pe/bitstreams/0918cc32-9f8e-4ccd-8ceb-eb9b40d9db6e/download
https://repositorio.pucp.edu.pe/bitstreams/5c152de7-dc7c-4c4b-adb4-fe690c5f2b81/download
https://repositorio.pucp.edu.pe/bitstreams/17a0f2b0-7596-43f9-8bdd-2daea8981133/download
https://repositorio.pucp.edu.pe/bitstreams/2dbf14e0-103a-40d6-a011-1b0dae0961da/download
https://repositorio.pucp.edu.pe/bitstreams/53978517-582c-441f-b93c-6531436cc603/download
bitstream.checksum.fl_str_mv 2c274ab861e1dd4741140c2d33733ddc
8fc46f5e71650fd7adee84a69b9163c2
8a4605be74aa9ea9d79846c1fba20a33
059b259df6c8b0c40920b0482ea64be2
0add03ec1154538e025f826051b2d103
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638691392913408
spelling Juárez, OmarLachira, Martín2020-12-16T02:17:52Z2020-12-16T02:17:52Z2020http://repositorio.pucp.edu.pe/index/handle/123456789/173522Let M be a compact domain in R3. The Hodge Decomposition Theorem yields a decomposition of the space of vector elds on M into ve mutually orthogonal subspaces that encode geometric and topological features of M. This decomposition is useful in many branches of mathematics, physics, and engineering. In this paper, we study the general version of this theorem, valid for di erential forms on smooth, compact, oriented manifolds with boundary, in any dimension, and deduce from it the particular ve-term decomposition for compact domains in 3-space. We do this by using basic notions from multivariable calculus, linear algebra, di erential forms, and algebraic topology, following the article [CDTG], by Cantarella, DeTurck and Gluck, and the book of Schwarz [S]. Furthermore, we present some applications of the notions developed in this paper to the formulation of Maxwell's equations and to the graphical representations of di erential forms in Rn.engPontificia Universidad del Perú. Vicerrectorado de Investigación. Dirección de Gestión de la InvestigaciónPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Hodge decompositionHodge theoryDi erential formsSmooth manifoldsMaxwell equationshttp://purl.org/pe-repo/ocde/ford#5.09.01Hodge Theory and Electromagnetisminfo:eu-repo/semantics/workingPaperDocumento de trabajoreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPORIGINALTexto académico final.pdfTexto académico final.pdfTexto académicoapplication/pdf768325https://repositorio.pucp.edu.pe/bitstreams/0918cc32-9f8e-4ccd-8ceb-eb9b40d9db6e/download2c274ab861e1dd4741140c2d33733ddcMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.pucp.edu.pe/bitstreams/5c152de7-dc7c-4c4b-adb4-fe690c5f2b81/download8fc46f5e71650fd7adee84a69b9163c2MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.pucp.edu.pe/bitstreams/17a0f2b0-7596-43f9-8bdd-2daea8981133/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILTexto académico final.pdf.jpgTexto académico final.pdf.jpgIM Thumbnailimage/jpeg39896https://repositorio.pucp.edu.pe/bitstreams/2dbf14e0-103a-40d6-a011-1b0dae0961da/download059b259df6c8b0c40920b0482ea64be2MD54falseAnonymousREADTEXTTexto académico final.pdf.txtTexto académico final.pdf.txtExtracted texttext/plain104280https://repositorio.pucp.edu.pe/bitstreams/53978517-582c-441f-b93c-6531436cc603/download0add03ec1154538e025f826051b2d103MD55falseAnonymousREAD20.500.14657/173522oai:repositorio.pucp.edu.pe:20.500.14657/1735222025-03-26 00:02:12.099http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.754616
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).