Hodge Theory and Electromagnetism
Descripción del Articulo
Let M be a compact domain in R3. The Hodge Decomposition Theorem yields a decomposition of the space of vector elds on M into ve mutually orthogonal subspaces that encode geometric and topological features of M. This decomposition is useful in many branches of mathematics, physics, and engineering....
Autores: | , |
---|---|
Formato: | documento de trabajo |
Fecha de Publicación: | 2020 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/173522 |
Enlace del recurso: | http://repositorio.pucp.edu.pe/index/handle/123456789/173522 |
Nivel de acceso: | acceso abierto |
Materia: | Hodge decomposition Hodge theory Di erential forms Smooth manifolds Maxwell equations http://purl.org/pe-repo/ocde/ford#5.09.01 |
id |
RPUC_642fe1e057a6243f874dbd0c2c9ebd87 |
---|---|
oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/173522 |
network_acronym_str |
RPUC |
network_name_str |
PUCP-Institucional |
repository_id_str |
2905 |
dc.title.es_ES.fl_str_mv |
Hodge Theory and Electromagnetism |
title |
Hodge Theory and Electromagnetism |
spellingShingle |
Hodge Theory and Electromagnetism Juárez, Omar Hodge decomposition Hodge theory Di erential forms Smooth manifolds Maxwell equations http://purl.org/pe-repo/ocde/ford#5.09.01 |
title_short |
Hodge Theory and Electromagnetism |
title_full |
Hodge Theory and Electromagnetism |
title_fullStr |
Hodge Theory and Electromagnetism |
title_full_unstemmed |
Hodge Theory and Electromagnetism |
title_sort |
Hodge Theory and Electromagnetism |
author |
Juárez, Omar |
author_facet |
Juárez, Omar Lachira, Martín |
author_role |
author |
author2 |
Lachira, Martín |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Juárez, Omar Lachira, Martín |
dc.subject.es_ES.fl_str_mv |
Hodge decomposition Hodge theory Di erential forms Smooth manifolds Maxwell equations |
topic |
Hodge decomposition Hodge theory Di erential forms Smooth manifolds Maxwell equations http://purl.org/pe-repo/ocde/ford#5.09.01 |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#5.09.01 |
description |
Let M be a compact domain in R3. The Hodge Decomposition Theorem yields a decomposition of the space of vector elds on M into ve mutually orthogonal subspaces that encode geometric and topological features of M. This decomposition is useful in many branches of mathematics, physics, and engineering. In this paper, we study the general version of this theorem, valid for di erential forms on smooth, compact, oriented manifolds with boundary, in any dimension, and deduce from it the particular ve-term decomposition for compact domains in 3-space. We do this by using basic notions from multivariable calculus, linear algebra, di erential forms, and algebraic topology, following the article [CDTG], by Cantarella, DeTurck and Gluck, and the book of Schwarz [S]. Furthermore, we present some applications of the notions developed in this paper to the formulation of Maxwell's equations and to the graphical representations of di erential forms in Rn. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-12-16T02:17:52Z |
dc.date.available.none.fl_str_mv |
2020-12-16T02:17:52Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.other.none.fl_str_mv |
Documento de trabajo |
format |
workingPaper |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.pucp.edu.pe/index/handle/123456789/173522 |
url |
http://repositorio.pucp.edu.pe/index/handle/123456789/173522 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_ES.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad del Perú. Vicerrectorado de Investigación. Dirección de Gestión de la Investigación |
dc.publisher.country.none.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Institucional |
collection |
PUCP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.pucp.edu.pe/bitstreams/0918cc32-9f8e-4ccd-8ceb-eb9b40d9db6e/download https://repositorio.pucp.edu.pe/bitstreams/5c152de7-dc7c-4c4b-adb4-fe690c5f2b81/download https://repositorio.pucp.edu.pe/bitstreams/17a0f2b0-7596-43f9-8bdd-2daea8981133/download https://repositorio.pucp.edu.pe/bitstreams/2dbf14e0-103a-40d6-a011-1b0dae0961da/download https://repositorio.pucp.edu.pe/bitstreams/53978517-582c-441f-b93c-6531436cc603/download |
bitstream.checksum.fl_str_mv |
2c274ab861e1dd4741140c2d33733ddc 8fc46f5e71650fd7adee84a69b9163c2 8a4605be74aa9ea9d79846c1fba20a33 059b259df6c8b0c40920b0482ea64be2 0add03ec1154538e025f826051b2d103 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
repository.mail.fl_str_mv |
repositorio@pucp.pe |
_version_ |
1835638691392913408 |
spelling |
Juárez, OmarLachira, Martín2020-12-16T02:17:52Z2020-12-16T02:17:52Z2020http://repositorio.pucp.edu.pe/index/handle/123456789/173522Let M be a compact domain in R3. The Hodge Decomposition Theorem yields a decomposition of the space of vector elds on M into ve mutually orthogonal subspaces that encode geometric and topological features of M. This decomposition is useful in many branches of mathematics, physics, and engineering. In this paper, we study the general version of this theorem, valid for di erential forms on smooth, compact, oriented manifolds with boundary, in any dimension, and deduce from it the particular ve-term decomposition for compact domains in 3-space. We do this by using basic notions from multivariable calculus, linear algebra, di erential forms, and algebraic topology, following the article [CDTG], by Cantarella, DeTurck and Gluck, and the book of Schwarz [S]. Furthermore, we present some applications of the notions developed in this paper to the formulation of Maxwell's equations and to the graphical representations of di erential forms in Rn.engPontificia Universidad del Perú. Vicerrectorado de Investigación. Dirección de Gestión de la InvestigaciónPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Hodge decompositionHodge theoryDi erential formsSmooth manifoldsMaxwell equationshttp://purl.org/pe-repo/ocde/ford#5.09.01Hodge Theory and Electromagnetisminfo:eu-repo/semantics/workingPaperDocumento de trabajoreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPORIGINALTexto académico final.pdfTexto académico final.pdfTexto académicoapplication/pdf768325https://repositorio.pucp.edu.pe/bitstreams/0918cc32-9f8e-4ccd-8ceb-eb9b40d9db6e/download2c274ab861e1dd4741140c2d33733ddcMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.pucp.edu.pe/bitstreams/5c152de7-dc7c-4c4b-adb4-fe690c5f2b81/download8fc46f5e71650fd7adee84a69b9163c2MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.pucp.edu.pe/bitstreams/17a0f2b0-7596-43f9-8bdd-2daea8981133/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILTexto académico final.pdf.jpgTexto académico final.pdf.jpgIM Thumbnailimage/jpeg39896https://repositorio.pucp.edu.pe/bitstreams/2dbf14e0-103a-40d6-a011-1b0dae0961da/download059b259df6c8b0c40920b0482ea64be2MD54falseAnonymousREADTEXTTexto académico final.pdf.txtTexto académico final.pdf.txtExtracted texttext/plain104280https://repositorio.pucp.edu.pe/bitstreams/53978517-582c-441f-b93c-6531436cc603/download0add03ec1154538e025f826051b2d103MD55falseAnonymousREAD20.500.14657/173522oai:repositorio.pucp.edu.pe:20.500.14657/1735222025-03-26 00:02:12.099http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.754616 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).