Forecast of canned fish consumption in Peru for an industrial fisheries project using time series models

Descripción del Articulo

In the canned fish production program, it is very important to calculate its forecast through statistical models that minimize the error of the projections and that allow estimating the quantities to be produced. The objective of this research work is to select a forecast model for the consumption o...

Descripción completa

Detalles Bibliográficos
Autores: Ramos Ángeles, Christian René, Valdivia Camacho, Gloria Esther
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional Agraria La Molina
Repositorio:Revistas - Universidad Nacional Agraria La Molina
Lenguaje:español
OAI Identifier:oai:revistas.lamolina.edu.pe:article/1528
Enlace del recurso:https://revistas.lamolina.edu.pe/index.php/acu/article/view/1528
Nivel de acceso:acceso abierto
Materia:Modelos de series de tiempo
regresión lineal
descomposición de series de tiempo
método de Winters
indicadores del error del pronóstico
Time series models
linear regression
time series decomposition
Winters method
forecast error measures
Descripción
Sumario:In the canned fish production program, it is very important to calculate its forecast through statistical models that minimize the error of the projections and that allow estimating the quantities to be produced. The objective of this research work is to select a forecast model for the consumption of canned fish in Peru for an industrial fishing project using time series models. Prediction models such as linear regression, time series decomposition and Winters’ method were used. The input data was the monthly domestic sales of canned fish from the years 2011 to 2014. The prediction error measures such as the mean absolute deviation (MAD) and the mean absolute percentage error (MAPE) of the prediction of a company were compared for a year (2014), two years (2013-2014), three years (2012-2014) and four years (2011-2014) to validate with the prediction for the years 2015-2019. The prediction model selected is the seasonal additive time series decomposition with data from two years (2013-2014) because it obtained the lowest MAD = 588.0 and the lowest MAPE = 15.00%.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).