Forecast of canned fish consumption in Peru for an industrial fisheries project using time series models
Descripción del Articulo
In the canned fish production program, it is very important to calculate its forecast through statistical models that minimize the error of the projections and that allow estimating the quantities to be produced. The objective of this research work is to select a forecast model for the consumption o...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Nacional Agraria La Molina |
Repositorio: | Revistas - Universidad Nacional Agraria La Molina |
Lenguaje: | español |
OAI Identifier: | oai:revistas.lamolina.edu.pe:article/1528 |
Enlace del recurso: | https://revistas.lamolina.edu.pe/index.php/acu/article/view/1528 |
Nivel de acceso: | acceso abierto |
Materia: | Modelos de series de tiempo regresión lineal descomposición de series de tiempo método de Winters indicadores del error del pronóstico Time series models linear regression time series decomposition Winters method forecast error measures |
Sumario: | In the canned fish production program, it is very important to calculate its forecast through statistical models that minimize the error of the projections and that allow estimating the quantities to be produced. The objective of this research work is to select a forecast model for the consumption of canned fish in Peru for an industrial fishing project using time series models. Prediction models such as linear regression, time series decomposition and Winters’ method were used. The input data was the monthly domestic sales of canned fish from the years 2011 to 2014. The prediction error measures such as the mean absolute deviation (MAD) and the mean absolute percentage error (MAPE) of the prediction of a company were compared for a year (2014), two years (2013-2014), three years (2012-2014) and four years (2011-2014) to validate with the prediction for the years 2015-2019. The prediction model selected is the seasonal additive time series decomposition with data from two years (2013-2014) because it obtained the lowest MAD = 588.0 and the lowest MAPE = 15.00%. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).