Assessing Data Analytics Capabilities in Retail Organizations: Insights into Mining, Predictive Analytics and Machine Learning

Descripción del Articulo

Nowadays, implementing data analytics is necessary to improve the collection, evaluation, analysis, and organization of data that allow the discovery of patterns, correlations, and trends that improve knowledge management, development of strategies, and decision-making in the organization. Therefore...

Descripción completa

Detalles Bibliográficos
Autores: Pariona-Luque, Rosario, Pacheco, Alex, Vegas-Gallo, Edwin, Castanho, Rui Alexandre, Lema, Fabian, Pacheco-Pumaleque, Liz, Añaños-Bedriñana, Marco, Marin, Wilson, Felix-Poicon, Edwin, Loures, Ana
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676071
Enlace del recurso:http://hdl.handle.net/10757/676071
Nivel de acceso:acceso embargado
Materia:Data analytics
Data extraction
knowledge creation
knowledge management
machine learning
predictive analytics
storage of knowledge
id UUPC_93c63e739f9cec6148dba4c8acbabf79
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676071
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Assessing Data Analytics Capabilities in Retail Organizations: Insights into Mining, Predictive Analytics and Machine Learning
title Assessing Data Analytics Capabilities in Retail Organizations: Insights into Mining, Predictive Analytics and Machine Learning
spellingShingle Assessing Data Analytics Capabilities in Retail Organizations: Insights into Mining, Predictive Analytics and Machine Learning
Pariona-Luque, Rosario
Data analytics
Data extraction
knowledge creation
knowledge management
machine learning
predictive analytics
storage of knowledge
title_short Assessing Data Analytics Capabilities in Retail Organizations: Insights into Mining, Predictive Analytics and Machine Learning
title_full Assessing Data Analytics Capabilities in Retail Organizations: Insights into Mining, Predictive Analytics and Machine Learning
title_fullStr Assessing Data Analytics Capabilities in Retail Organizations: Insights into Mining, Predictive Analytics and Machine Learning
title_full_unstemmed Assessing Data Analytics Capabilities in Retail Organizations: Insights into Mining, Predictive Analytics and Machine Learning
title_sort Assessing Data Analytics Capabilities in Retail Organizations: Insights into Mining, Predictive Analytics and Machine Learning
author Pariona-Luque, Rosario
author_facet Pariona-Luque, Rosario
Pacheco, Alex
Vegas-Gallo, Edwin
Castanho, Rui Alexandre
Lema, Fabian
Pacheco-Pumaleque, Liz
Añaños-Bedriñana, Marco
Marin, Wilson
Felix-Poicon, Edwin
Loures, Ana
author_role author
author2 Pacheco, Alex
Vegas-Gallo, Edwin
Castanho, Rui Alexandre
Lema, Fabian
Pacheco-Pumaleque, Liz
Añaños-Bedriñana, Marco
Marin, Wilson
Felix-Poicon, Edwin
Loures, Ana
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Pariona-Luque, Rosario
Pacheco, Alex
Vegas-Gallo, Edwin
Castanho, Rui Alexandre
Lema, Fabian
Pacheco-Pumaleque, Liz
Añaños-Bedriñana, Marco
Marin, Wilson
Felix-Poicon, Edwin
Loures, Ana
dc.subject.es_PE.fl_str_mv Data analytics
Data extraction
knowledge creation
knowledge management
machine learning
predictive analytics
storage of knowledge
topic Data analytics
Data extraction
knowledge creation
knowledge management
machine learning
predictive analytics
storage of knowledge
description Nowadays, implementing data analytics is necessary to improve the collection, evaluation, analysis, and organization of data that allow the discovery of patterns, correlations, and trends that improve knowledge management, development of strategies, and decision-making in the organization. Therefore, this study aims to provide an accurate and detailed assessment of the current state of data analytics in the retail sector, identifying specific areas of improvement to strengthen knowledge management in organizations. The research is applied with a quantitative approach and non-experimental design at a descriptive and propositional level. The survey technique was used, and as a data collection instrument, a questionnaire addressed to 351 employees of companies in the retail sector concerning the variable data analysis with the dimensions of data extraction, predictive analysis, and machine learning and the variable management of the knowledge with the dimensions knowledge creation and knowledge storage. The results show that 52.99% of collaborators indicate that the level of data extraction is terrible, 57.83% indicate that the level of predictive analysis is wrong, and 54.99% express that the level of machine learning is average, which contributes to the implementation of innovative resources and solutions that promote the inclusion of a high-tech approach to address information management problems and contribution to the development of knowledge in an institution.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-10T06:59:28Z
dc.date.available.none.fl_str_mv 2024-10-10T06:59:28Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 11099526
dc.identifier.doi.none.fl_str_mv 10.37394/23207.2024.21.126
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676071
dc.identifier.eissn.none.fl_str_mv 22242899
dc.identifier.journal.es_PE.fl_str_mv WSEAS Transactions on Business and Economics
dc.identifier.eid.none.fl_str_mv 2-s2.0-85202906900
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85202906900
identifier_str_mv 11099526
10.37394/23207.2024.21.126
22242899
WSEAS Transactions on Business and Economics
2-s2.0-85202906900
SCOPUS_ID:85202906900
url http://hdl.handle.net/10757/676071
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv World Scientific and Engineering Academy and Society
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv WSEAS Transactions on Business and Economics
dc.source.volume.none.fl_str_mv 21
dc.source.beginpage.none.fl_str_mv 1546
dc.source.endpage.none.fl_str_mv 1556
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676071/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837187181942145024
spelling 61951bd049a2235613f60a00f14dee4b3006fb68e4759a60b4ff00ecf2734abdca5c4f35317622b16c89831959e9774b0ec3004b0455e621fbe6f85e7669adda829098300d2bc9a9592c0e05fb8b5f94fa71e34d53002b7deefe07ec285247d1a716725d79b0300837f0b798f0e3568b76afe23e45cb93a3009c441d869693964b4fc66640826362593003ee8640dd1697104bf1a30e7288e2c86300f3dfb1b55412fecc31cc02e4110e6ea3300Pariona-Luque, RosarioPacheco, AlexVegas-Gallo, EdwinCastanho, Rui AlexandreLema, FabianPacheco-Pumaleque, LizAñaños-Bedriñana, MarcoMarin, WilsonFelix-Poicon, EdwinLoures, Ana2024-10-10T06:59:28Z2024-10-10T06:59:28Z2024-01-011109952610.37394/23207.2024.21.126http://hdl.handle.net/10757/67607122242899WSEAS Transactions on Business and Economics2-s2.0-85202906900SCOPUS_ID:85202906900Nowadays, implementing data analytics is necessary to improve the collection, evaluation, analysis, and organization of data that allow the discovery of patterns, correlations, and trends that improve knowledge management, development of strategies, and decision-making in the organization. Therefore, this study aims to provide an accurate and detailed assessment of the current state of data analytics in the retail sector, identifying specific areas of improvement to strengthen knowledge management in organizations. The research is applied with a quantitative approach and non-experimental design at a descriptive and propositional level. The survey technique was used, and as a data collection instrument, a questionnaire addressed to 351 employees of companies in the retail sector concerning the variable data analysis with the dimensions of data extraction, predictive analysis, and machine learning and the variable management of the knowledge with the dimensions knowledge creation and knowledge storage. The results show that 52.99% of collaborators indicate that the level of data extraction is terrible, 57.83% indicate that the level of predictive analysis is wrong, and 54.99% express that the level of machine learning is average, which contributes to the implementation of innovative resources and solutions that promote the inclusion of a high-tech approach to address information management problems and contribution to the development of knowledge in an institution.Fundação para a Ciência e a Tecnologiaapplication/htmlengWorld Scientific and Engineering Academy and Societyinfo:eu-repo/semantics/embargoedAccessData analyticsData extractionknowledge creationknowledge managementmachine learningpredictive analyticsstorage of knowledgeAssessing Data Analytics Capabilities in Retail Organizations: Insights into Mining, Predictive Analytics and Machine Learninginfo:eu-repo/semantics/articleWSEAS Transactions on Business and Economics2115461556reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676071/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676071oai:repositorioacademico.upc.edu.pe:10757/6760712024-10-10 06:59:30.252Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).