Forecasting Electric Load Demand through Advanced Statistical Techniques

Descripción del Articulo

Traditional forecasting models have been widely used for decision-making in production, finance and energy. Such is the case of the ARIMA models, developed in the 1970s by George Box and Gwilym Jenkins [1], which incorporate characteristics of the past models of the same series, according to their a...

Descripción completa

Detalles Bibliográficos
Autores: Silva, Jesús, Senior Naveda, Alexa, García Guliany, Jesús, Niebles Núẽz, William, Hernández Palma, Hugo
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/652142
Enlace del recurso:http://hdl.handle.net/10757/652142
Nivel de acceso:acceso abierto
Materia:Bayesian networks
Decision making
Bayesian methods
Colombia
Electric load demands
Forecasting models
Statistical techniques
Electric load forecasting
id UUPC_7e99fb164410d5d7d5be2fd2b26acc87
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/652142
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.en_US.fl_str_mv Forecasting Electric Load Demand through Advanced Statistical Techniques
title Forecasting Electric Load Demand through Advanced Statistical Techniques
spellingShingle Forecasting Electric Load Demand through Advanced Statistical Techniques
Silva, Jesús
Bayesian networks
Decision making
Bayesian methods
Colombia
Electric load demands
Forecasting models
Statistical techniques
Electric load forecasting
title_short Forecasting Electric Load Demand through Advanced Statistical Techniques
title_full Forecasting Electric Load Demand through Advanced Statistical Techniques
title_fullStr Forecasting Electric Load Demand through Advanced Statistical Techniques
title_full_unstemmed Forecasting Electric Load Demand through Advanced Statistical Techniques
title_sort Forecasting Electric Load Demand through Advanced Statistical Techniques
author Silva, Jesús
author_facet Silva, Jesús
Senior Naveda, Alexa
García Guliany, Jesús
Niebles Núẽz, William
Hernández Palma, Hugo
author_role author
author2 Senior Naveda, Alexa
García Guliany, Jesús
Niebles Núẽz, William
Hernández Palma, Hugo
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Silva, Jesús
Senior Naveda, Alexa
García Guliany, Jesús
Niebles Núẽz, William
Hernández Palma, Hugo
dc.subject.en_US.fl_str_mv Bayesian networks
Decision making
Bayesian methods
Colombia
Electric load demands
Forecasting models
Statistical techniques
Electric load forecasting
topic Bayesian networks
Decision making
Bayesian methods
Colombia
Electric load demands
Forecasting models
Statistical techniques
Electric load forecasting
description Traditional forecasting models have been widely used for decision-making in production, finance and energy. Such is the case of the ARIMA models, developed in the 1970s by George Box and Gwilym Jenkins [1], which incorporate characteristics of the past models of the same series, according to their autocorrelation. This work compares advanced statistical methods for determining the demand for electricity in Colombia, including the SARIMA, econometric and Bayesian methods.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-02T16:24:49Z
dc.date.available.none.fl_str_mv 2020-07-02T16:24:49Z
dc.date.issued.fl_str_mv 2020-01-07
dc.type.en_US.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 17426588
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/1432/1/012031
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/652142
dc.identifier.eissn.none.fl_str_mv 17426596
dc.identifier.journal.en_US.fl_str_mv Journal of Physics: Conference Series
dc.identifier.eid.none.fl_str_mv 2-s2.0-85079092996
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85079092996
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 17426588
10.1088/1742-6596/1432/1/012031
17426596
Journal of Physics: Conference Series
2-s2.0-85079092996
SCOPUS_ID:85079092996
0000 0001 2196 144X
url http://hdl.handle.net/10757/652142
dc.language.iso.en_US.fl_str_mv eng
language eng
dc.relation.url.en_US.fl_str_mv https://iopscience.iop.org/article/10.1088/1742-6596/1432/1/012031
dc.rights.en_US.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.en_US.fl_str_mv application/pdf
dc.publisher.en_US.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Journal of Physics: Conference Series
dc.source.volume.none.fl_str_mv 1432
dc.source.issue.none.fl_str_mv 1
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/5/10.10881742-659614321012031.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/4/10.10881742-659614321012031.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/1/10.10881742-659614321012031.pdf
bitstream.checksum.fl_str_mv 98b64ef7e1168f37bc1294a40df14bb0
963acca0ccb367292d32de9d1bc6bb72
8a4605be74aa9ea9d79846c1fba20a33
934f4ca17e109e0a05eaeaba504d7ce4
0d11916aa1d4deaac6f6a0d0dd54b182
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837188243376832512
spelling 4dc0aefbea6d494fa03e7acf0e5b06995007679b990a63b8feb6a3c46bff72338205006f1ead9ac4ea09f67596b8fd2d965e02300b547fd60ecb3cb34e467d8346b3bdb0450070c0843e406fa4d4e04ee178a790e187500Silva, JesúsSenior Naveda, AlexaGarcía Guliany, JesúsNiebles Núẽz, WilliamHernández Palma, Hugo2020-07-02T16:24:49Z2020-07-02T16:24:49Z2020-01-071742658810.1088/1742-6596/1432/1/012031http://hdl.handle.net/10757/65214217426596Journal of Physics: Conference Series2-s2.0-85079092996SCOPUS_ID:850790929960000 0001 2196 144XTraditional forecasting models have been widely used for decision-making in production, finance and energy. Such is the case of the ARIMA models, developed in the 1970s by George Box and Gwilym Jenkins [1], which incorporate characteristics of the past models of the same series, according to their autocorrelation. This work compares advanced statistical methods for determining the demand for electricity in Colombia, including the SARIMA, econometric and Bayesian methods.application/pdfengInstitute of Physics Publishinghttps://iopscience.iop.org/article/10.1088/1742-6596/1432/1/012031info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Bayesian networksDecision makingBayesian methodsColombiaElectric load demandsForecasting modelsStatistical techniquesElectric load forecastingForecasting Electric Load Demand through Advanced Statistical Techniquesinfo:eu-repo/semantics/articleJournal of Physics: Conference Series14321reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2020-07-02T16:24:52ZTHUMBNAIL10.10881742-659614321012031.pdf.jpg10.10881742-659614321012031.pdf.jpgGenerated Thumbnailimage/jpeg55287https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/5/10.10881742-659614321012031.pdf.jpg98b64ef7e1168f37bc1294a40df14bb0MD55falseTEXT10.10881742-659614321012031.pdf.txt10.10881742-659614321012031.pdf.txtExtracted texttext/plain21359https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/4/10.10881742-659614321012031.pdf.txt963acca0ccb367292d32de9d1bc6bb72MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52falseORIGINAL10.10881742-659614321012031.pdf10.10881742-659614321012031.pdfapplication/pdf833166https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/1/10.10881742-659614321012031.pdf0d11916aa1d4deaac6f6a0d0dd54b182MD51true10757/652142oai:repositorioacademico.upc.edu.pe:10757/6521422020-07-03 02:02:22.165Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.919782
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).