Forecasting Electric Load Demand through Advanced Statistical Techniques
Descripción del Articulo
Traditional forecasting models have been widely used for decision-making in production, finance and energy. Such is the case of the ARIMA models, developed in the 1970s by George Box and Gwilym Jenkins [1], which incorporate characteristics of the past models of the same series, according to their a...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/652142 |
Enlace del recurso: | http://hdl.handle.net/10757/652142 |
Nivel de acceso: | acceso abierto |
Materia: | Bayesian networks Decision making Bayesian methods Colombia Electric load demands Forecasting models Statistical techniques Electric load forecasting |
id |
UUPC_7e99fb164410d5d7d5be2fd2b26acc87 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/652142 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.en_US.fl_str_mv |
Forecasting Electric Load Demand through Advanced Statistical Techniques |
title |
Forecasting Electric Load Demand through Advanced Statistical Techniques |
spellingShingle |
Forecasting Electric Load Demand through Advanced Statistical Techniques Silva, Jesús Bayesian networks Decision making Bayesian methods Colombia Electric load demands Forecasting models Statistical techniques Electric load forecasting |
title_short |
Forecasting Electric Load Demand through Advanced Statistical Techniques |
title_full |
Forecasting Electric Load Demand through Advanced Statistical Techniques |
title_fullStr |
Forecasting Electric Load Demand through Advanced Statistical Techniques |
title_full_unstemmed |
Forecasting Electric Load Demand through Advanced Statistical Techniques |
title_sort |
Forecasting Electric Load Demand through Advanced Statistical Techniques |
author |
Silva, Jesús |
author_facet |
Silva, Jesús Senior Naveda, Alexa García Guliany, Jesús Niebles Núẽz, William Hernández Palma, Hugo |
author_role |
author |
author2 |
Senior Naveda, Alexa García Guliany, Jesús Niebles Núẽz, William Hernández Palma, Hugo |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Silva, Jesús Senior Naveda, Alexa García Guliany, Jesús Niebles Núẽz, William Hernández Palma, Hugo |
dc.subject.en_US.fl_str_mv |
Bayesian networks Decision making Bayesian methods Colombia Electric load demands Forecasting models Statistical techniques Electric load forecasting |
topic |
Bayesian networks Decision making Bayesian methods Colombia Electric load demands Forecasting models Statistical techniques Electric load forecasting |
description |
Traditional forecasting models have been widely used for decision-making in production, finance and energy. Such is the case of the ARIMA models, developed in the 1970s by George Box and Gwilym Jenkins [1], which incorporate characteristics of the past models of the same series, according to their autocorrelation. This work compares advanced statistical methods for determining the demand for electricity in Colombia, including the SARIMA, econometric and Bayesian methods. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-07-02T16:24:49Z |
dc.date.available.none.fl_str_mv |
2020-07-02T16:24:49Z |
dc.date.issued.fl_str_mv |
2020-01-07 |
dc.type.en_US.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.issn.none.fl_str_mv |
17426588 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/1432/1/012031 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/652142 |
dc.identifier.eissn.none.fl_str_mv |
17426596 |
dc.identifier.journal.en_US.fl_str_mv |
Journal of Physics: Conference Series |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85079092996 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85079092996 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
17426588 10.1088/1742-6596/1432/1/012031 17426596 Journal of Physics: Conference Series 2-s2.0-85079092996 SCOPUS_ID:85079092996 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/652142 |
dc.language.iso.en_US.fl_str_mv |
eng |
language |
eng |
dc.relation.url.en_US.fl_str_mv |
https://iopscience.iop.org/article/10.1088/1742-6596/1432/1/012031 |
dc.rights.en_US.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.en_US.fl_str_mv |
application/pdf |
dc.publisher.en_US.fl_str_mv |
Institute of Physics Publishing |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Journal of Physics: Conference Series |
dc.source.volume.none.fl_str_mv |
1432 |
dc.source.issue.none.fl_str_mv |
1 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/5/10.10881742-659614321012031.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/4/10.10881742-659614321012031.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/1/10.10881742-659614321012031.pdf |
bitstream.checksum.fl_str_mv |
98b64ef7e1168f37bc1294a40df14bb0 963acca0ccb367292d32de9d1bc6bb72 8a4605be74aa9ea9d79846c1fba20a33 934f4ca17e109e0a05eaeaba504d7ce4 0d11916aa1d4deaac6f6a0d0dd54b182 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837188243376832512 |
spelling |
4dc0aefbea6d494fa03e7acf0e5b06995007679b990a63b8feb6a3c46bff72338205006f1ead9ac4ea09f67596b8fd2d965e02300b547fd60ecb3cb34e467d8346b3bdb0450070c0843e406fa4d4e04ee178a790e187500Silva, JesúsSenior Naveda, AlexaGarcía Guliany, JesúsNiebles Núẽz, WilliamHernández Palma, Hugo2020-07-02T16:24:49Z2020-07-02T16:24:49Z2020-01-071742658810.1088/1742-6596/1432/1/012031http://hdl.handle.net/10757/65214217426596Journal of Physics: Conference Series2-s2.0-85079092996SCOPUS_ID:850790929960000 0001 2196 144XTraditional forecasting models have been widely used for decision-making in production, finance and energy. Such is the case of the ARIMA models, developed in the 1970s by George Box and Gwilym Jenkins [1], which incorporate characteristics of the past models of the same series, according to their autocorrelation. This work compares advanced statistical methods for determining the demand for electricity in Colombia, including the SARIMA, econometric and Bayesian methods.application/pdfengInstitute of Physics Publishinghttps://iopscience.iop.org/article/10.1088/1742-6596/1432/1/012031info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Bayesian networksDecision makingBayesian methodsColombiaElectric load demandsForecasting modelsStatistical techniquesElectric load forecastingForecasting Electric Load Demand through Advanced Statistical Techniquesinfo:eu-repo/semantics/articleJournal of Physics: Conference Series14321reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2020-07-02T16:24:52ZTHUMBNAIL10.10881742-659614321012031.pdf.jpg10.10881742-659614321012031.pdf.jpgGenerated Thumbnailimage/jpeg55287https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/5/10.10881742-659614321012031.pdf.jpg98b64ef7e1168f37bc1294a40df14bb0MD55falseTEXT10.10881742-659614321012031.pdf.txt10.10881742-659614321012031.pdf.txtExtracted texttext/plain21359https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/4/10.10881742-659614321012031.pdf.txt963acca0ccb367292d32de9d1bc6bb72MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52falseORIGINAL10.10881742-659614321012031.pdf10.10881742-659614321012031.pdfapplication/pdf833166https://repositorioacademico.upc.edu.pe/bitstream/10757/652142/1/10.10881742-659614321012031.pdf0d11916aa1d4deaac6f6a0d0dd54b182MD51true10757/652142oai:repositorioacademico.upc.edu.pe:10757/6521422020-07-03 02:02:22.165Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.919782 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).