Conditional forecasting of Peruvian inflation: A Bayesian approach

Descripción del Articulo

This article shows the application of a conditional VAR model in order to estimate the future path of Peruvian inflation conditioned to US inflation based on 3 possible scenarios: optimistic, average and pessimistic. For the Peruvian case, the methodology developed by Waggoner and Zha (1999) is inco...

Descripción completa

Detalles Bibliográficos
Autores: Álvarez García, Kevin Antonio, Velita Zorrilla, Raúl
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/23282
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/econo/article/view/23282
Nivel de acceso:acceso abierto
Materia:Bayesian VAR
Forecasts
Monetary Policy
Inflation
VAR Bayesiano
Pronósticos
Política Monetaria
Inflación
Descripción
Sumario:This article shows the application of a conditional VAR model in order to estimate the future path of Peruvian inflation conditioned to US inflation based on 3 possible scenarios: optimistic, average and pessimistic. For the Peruvian case, the methodology developed by Waggoner and Zha (1999) is incorporated, under Bayesian estimations and using the Gibss Sampling algorithm to estimate and simulate the forecast distributions. The results show that for the year 2022 and in a pessimistic scenario, Peruvian inflation would reach its highest level in June. In an average scenario, the highest level of inflation would be reached in April, while in an optimistic scenario, it would reach a maximum level in March. Additionally, it is observed that the difference in average Peruvian inflation from one scenario to another is around 0.2% per month.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).