Forecasting Electric Load Demand through Advanced Statistical Techniques

Descripción del Articulo

Traditional forecasting models have been widely used for decision-making in production, finance and energy. Such is the case of the ARIMA models, developed in the 1970s by George Box and Gwilym Jenkins [1], which incorporate characteristics of the past models of the same series, according to their a...

Descripción completa

Detalles Bibliográficos
Autores: Silva, Jesús, Senior Naveda, Alexa, García Guliany, Jesús, Niebles Núẽz, William, Hernández Palma, Hugo
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/652142
Enlace del recurso:http://hdl.handle.net/10757/652142
Nivel de acceso:acceso abierto
Materia:Bayesian networks
Decision making
Bayesian methods
Colombia
Electric load demands
Forecasting models
Statistical techniques
Electric load forecasting
Descripción
Sumario:Traditional forecasting models have been widely used for decision-making in production, finance and energy. Such is the case of the ARIMA models, developed in the 1970s by George Box and Gwilym Jenkins [1], which incorporate characteristics of the past models of the same series, according to their autocorrelation. This work compares advanced statistical methods for determining the demand for electricity in Colombia, including the SARIMA, econometric and Bayesian methods.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).