Framework for the Adaptive Learning of Higher Education Students in Virtual Classes in Peru Using CRISP-DM and Machine Learning
Descripción del Articulo
        During the COVID-19 pandemic, virtual education played a significant role around the world. In post-pandemic Peru, higher education institutions did not entirely dismiss the online education modality. However, this virtual education system maintains a traditional teaching-learning model, where all s...
              
            
    
                        | Autores: | , , | 
|---|---|
| Formato: | artículo | 
| Fecha de Publicación: | 2024 | 
| Institución: | Universidad Peruana de Ciencias Aplicadas | 
| Repositorio: | UPC-Institucional | 
| Lenguaje: | inglés | 
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/673713 | 
| Enlace del recurso: | http://hdl.handle.net/10757/673713 | 
| Nivel de acceso: | acceso embargado | 
| Materia: | Adaptive Learning CRISP-DM Machine Learning Virtual Classes | 
| id | UUPC_79b048f6aa22f752b787fa7f62a78eb2 | 
|---|---|
| oai_identifier_str | oai:repositorioacademico.upc.edu.pe:10757/673713 | 
| network_acronym_str | UUPC | 
| network_name_str | UPC-Institucional | 
| repository_id_str | 2670 | 
| dc.title.es_PE.fl_str_mv | Framework for the Adaptive Learning of Higher Education Students in Virtual Classes in Peru Using CRISP-DM and Machine Learning | 
| title | Framework for the Adaptive Learning of Higher Education Students in Virtual Classes in Peru Using CRISP-DM and Machine Learning | 
| spellingShingle | Framework for the Adaptive Learning of Higher Education Students in Virtual Classes in Peru Using CRISP-DM and Machine Learning Bautista, Maryori Adaptive Learning CRISP-DM Machine Learning Virtual Classes | 
| title_short | Framework for the Adaptive Learning of Higher Education Students in Virtual Classes in Peru Using CRISP-DM and Machine Learning | 
| title_full | Framework for the Adaptive Learning of Higher Education Students in Virtual Classes in Peru Using CRISP-DM and Machine Learning | 
| title_fullStr | Framework for the Adaptive Learning of Higher Education Students in Virtual Classes in Peru Using CRISP-DM and Machine Learning | 
| title_full_unstemmed | Framework for the Adaptive Learning of Higher Education Students in Virtual Classes in Peru Using CRISP-DM and Machine Learning | 
| title_sort | Framework for the Adaptive Learning of Higher Education Students in Virtual Classes in Peru Using CRISP-DM and Machine Learning | 
| author | Bautista, Maryori | 
| author_facet | Bautista, Maryori Alfaro, Sebastian Wong, Lenis | 
| author_role | author | 
| author2 | Alfaro, Sebastian Wong, Lenis | 
| author2_role | author author | 
| dc.contributor.author.fl_str_mv | Bautista, Maryori Alfaro, Sebastian Wong, Lenis | 
| dc.subject.es_PE.fl_str_mv | Adaptive Learning CRISP-DM Machine Learning Virtual Classes | 
| topic | Adaptive Learning CRISP-DM Machine Learning Virtual Classes | 
| description | During the COVID-19 pandemic, virtual education played a significant role around the world. In post-pandemic Peru, higher education institutions did not entirely dismiss the online education modality. However, this virtual education system maintains a traditional teaching-learning model, where all students receive the same content material and are expected to learn in the same way; as a result, it has not been effective in meeting the individual needs of students, causing poor performance in many cases. For this reason, a framework is proposed for the adaptive learning of higher education students in virtual classes using the Cross-Industry Standard Process for Data Mining (CRISP-DM) and Machine Learning (ML) methodology in order to recommend individualized learning materials. This framework is made up of four stages: (i) Analysis of student aspects, (ii) Analysis of Learning Methodology (LM), (iii) ML development and (iv) Integration of LM and ML models. (i) evaluates the student-related factors to be considered in adapting their learning content material. (ii) Evaluate which LM is more effective in a virtual environment. In (iii), Four ML algorithms based on the CRISP-DM methodology are implemented. In (iv), The best ML model is integrated with the LM in a virtual class. Two experiments were carried out to compare the traditional teaching methodology (experiment I) and the proposed framework (experiment 2) with a sample of 68 students. The results showed that the framework was more effective in promoting progress and academic performance, obtaining an Improvement Percentage (IP) of 39.72%. This percentage was calculated by subtracting the grade average of the tests taken at the beginning and end of each experiment. | 
| publishDate | 2024 | 
| dc.date.accessioned.none.fl_str_mv | 2024-06-09T13:47:16Z | 
| dc.date.available.none.fl_str_mv | 2024-06-09T13:47:16Z | 
| dc.date.issued.fl_str_mv | 2024-01-01 | 
| dc.type.es_PE.fl_str_mv | info:eu-repo/semantics/article | 
| format | article | 
| dc.identifier.issn.none.fl_str_mv | 15493636 | 
| dc.identifier.doi.none.fl_str_mv | 10.3844/jcsp.2024.522.534 | 
| dc.identifier.uri.none.fl_str_mv | http://hdl.handle.net/10757/673713 | 
| dc.identifier.eissn.none.fl_str_mv | 15526607 | 
| dc.identifier.journal.es_PE.fl_str_mv | Journal of Computer Science | 
| dc.identifier.eid.none.fl_str_mv | 2-s2.0-85188257592 | 
| dc.identifier.scopusid.none.fl_str_mv | SCOPUS_ID:85188257592 | 
| dc.identifier.isni.none.fl_str_mv | 0000 0001 2196 144X | 
| identifier_str_mv | 15493636 10.3844/jcsp.2024.522.534 15526607 Journal of Computer Science 2-s2.0-85188257592 SCOPUS_ID:85188257592 0000 0001 2196 144X | 
| url | http://hdl.handle.net/10757/673713 | 
| dc.language.iso.es_PE.fl_str_mv | eng | 
| language | eng | 
| dc.rights.es_PE.fl_str_mv | info:eu-repo/semantics/embargoedAccess | 
| eu_rights_str_mv | embargoedAccess | 
| dc.format.es_PE.fl_str_mv | application/pdf | 
| dc.publisher.es_PE.fl_str_mv | Science Publications | 
| dc.source.es_PE.fl_str_mv | Repositorio Academico - UPC Universidad Peruana de Ciencias Aplicadas (UPC) | 
| dc.source.none.fl_str_mv | reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC | 
| instname_str | Universidad Peruana de Ciencias Aplicadas | 
| instacron_str | UPC | 
| institution | UPC | 
| reponame_str | UPC-Institucional | 
| collection | UPC-Institucional | 
| dc.source.journaltitle.none.fl_str_mv | Journal of Computer Science | 
| dc.source.volume.none.fl_str_mv | 20 | 
| dc.source.issue.none.fl_str_mv | 5 | 
| dc.source.beginpage.none.fl_str_mv | 522 | 
| dc.source.endpage.none.fl_str_mv | 534 | 
| bitstream.url.fl_str_mv | https://repositorioacademico.upc.edu.pe/bitstream/10757/673713/1/license.txt | 
| bitstream.checksum.fl_str_mv | 8a4605be74aa9ea9d79846c1fba20a33 | 
| bitstream.checksumAlgorithm.fl_str_mv | MD5 | 
| repository.name.fl_str_mv | Repositorio académico upc | 
| repository.mail.fl_str_mv | upc@openrepository.com | 
| _version_ | 1846066020527112192 | 
| spelling | 3fb8dd88b554e44448dde0cfa0277e8b3006f08bfd4c7b441fa6d7b3e47dfa6e408300f1524a3bbf68b7e2680e1ab2f7ba0bfd500Bautista, MaryoriAlfaro, SebastianWong, Lenis2024-06-09T13:47:16Z2024-06-09T13:47:16Z2024-01-011549363610.3844/jcsp.2024.522.534http://hdl.handle.net/10757/67371315526607Journal of Computer Science2-s2.0-85188257592SCOPUS_ID:851882575920000 0001 2196 144XDuring the COVID-19 pandemic, virtual education played a significant role around the world. In post-pandemic Peru, higher education institutions did not entirely dismiss the online education modality. However, this virtual education system maintains a traditional teaching-learning model, where all students receive the same content material and are expected to learn in the same way; as a result, it has not been effective in meeting the individual needs of students, causing poor performance in many cases. For this reason, a framework is proposed for the adaptive learning of higher education students in virtual classes using the Cross-Industry Standard Process for Data Mining (CRISP-DM) and Machine Learning (ML) methodology in order to recommend individualized learning materials. This framework is made up of four stages: (i) Analysis of student aspects, (ii) Analysis of Learning Methodology (LM), (iii) ML development and (iv) Integration of LM and ML models. (i) evaluates the student-related factors to be considered in adapting their learning content material. (ii) Evaluate which LM is more effective in a virtual environment. In (iii), Four ML algorithms based on the CRISP-DM methodology are implemented. In (iv), The best ML model is integrated with the LM in a virtual class. Two experiments were carried out to compare the traditional teaching methodology (experiment I) and the proposed framework (experiment 2) with a sample of 68 students. The results showed that the framework was more effective in promoting progress and academic performance, obtaining an Improvement Percentage (IP) of 39.72%. This percentage was calculated by subtracting the grade average of the tests taken at the beginning and end of each experiment.Revisión por paresapplication/pdfengScience Publicationsinfo:eu-repo/semantics/embargoedAccessRepositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)Journal of Computer Science205522534reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCAdaptive LearningCRISP-DMMachine LearningVirtual ClassesFramework for the Adaptive Learning of Higher Education Students in Virtual Classes in Peru Using CRISP-DM and Machine Learninginfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/673713/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/673713oai:repositorioacademico.upc.edu.pe:10757/6737132024-06-09 13:47:19.514Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= | 
| score | 13.913218 | 
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
 
   
   
             
            