Algoritmos de Machine Learning para la priorización de clientes en campañas comerciales en un call center de ventas, MF Asesoría y Consultoría 2024

Descripción del Articulo

El trabajo de suficiencia profesional tuvo como propósito desarrollar e implementar un modelo de machine learning para la priorización de clientes en una campaña comercial de ventas telefónicas de productos financieros en la empresa MF Asesoría y Consultoría S.A.C., especializada en la gestión de fu...

Descripción completa

Detalles Bibliográficos
Autor: Villacorta Tito, Luis Daniel
Formato: tesis de grado
Fecha de Publicación:2025
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/27491
Enlace del recurso:https://hdl.handle.net/20.500.12672/27491
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático
Machine learning
Clasificación
CRISP-DM
Ventas telefónicas
https://purl.org/pe-repo/ocde/ford#1.01.03
Descripción
Sumario:El trabajo de suficiencia profesional tuvo como propósito desarrollar e implementar un modelo de machine learning para la priorización de clientes en una campaña comercial de ventas telefónicas de productos financieros en la empresa MF Asesoría y Consultoría S.A.C., especializada en la gestión de fuerzas de venta para entidades del sector financiero. El problema identificado fue la asignación subóptima del esfuerzo comercial por el uso exclusivo del juicio experto. Para abordarlo se aplicó la metodología CRISP-DM, que incluyó exploración, limpieza y transformación de datos, así como la selección y evaluación de algoritmos de clasificación. Tras comparar más de diez modelos y ajustar hiperparámetros mediante RandomGridSearch, se seleccionó Linear Discriminant Analysis (LDA) por su rendimiento y capacidad de generar probabilidades. El modelo se integró en un pipeline y fue desplegado en producción, obteniendo mejoras en la productividad y efectividad comercial, con un AUC de 0.713 y un Gini de 0.426. Se concluye que el enfoque basado en datos permite una asignación más eficiente de recursos y puede ser replicado en otras campañas del sector financiero.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).