Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines

Descripción del Articulo

This research aims to enhance the classification of the rock mass in underground mining, a common problem due to geological alterations that do not fit existing methods. Artificial neural networks are proposed as a solution, which use input/output data to learn and solve problems. The process involv...

Descripción completa

Detalles Bibliográficos
Autores: Brousset, Julyans, Pehovaz, Humberto, Quispe, Grimaldo, Raymundo, Carlos, Moguerza, Javier M.
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/668730
Enlace del recurso:http://hdl.handle.net/10757/668730
Nivel de acceso:acceso abierto
Materia:Artificial intelligence
Artificial neural networks
Geomechanical classification
Geomechanical model
Uncertainty
Classification
Rock mass
Underground mining
Geological alterations
Input/output data
Training
Real-time
RMR index
Precise classification results
id UUPC_1da78b5d1474f21066c3edb79f5e8c14
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/668730
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines
title Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines
spellingShingle Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines
Brousset, Julyans
Artificial intelligence
Artificial neural networks
Geomechanical classification
Geomechanical model
Uncertainty
Classification
Rock mass
Underground mining
Geological alterations
Artificial neural networks
Input/output data
Training
Real-time
RMR index
Precise classification results
title_short Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines
title_full Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines
title_fullStr Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines
title_full_unstemmed Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines
title_sort Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines
author Brousset, Julyans
author_facet Brousset, Julyans
Pehovaz, Humberto
Quispe, Grimaldo
Raymundo, Carlos
Moguerza, Javier M.
author_role author
author2 Pehovaz, Humberto
Quispe, Grimaldo
Raymundo, Carlos
Moguerza, Javier M.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Brousset, Julyans
Pehovaz, Humberto
Quispe, Grimaldo
Raymundo, Carlos
Moguerza, Javier M.
dc.subject.es_PE.fl_str_mv Artificial intelligence
Artificial neural networks
Geomechanical classification
Geomechanical model
Uncertainty
Classification
Rock mass
Underground mining
Geological alterations
Artificial neural networks
Input/output data
Training
Real-time
RMR index
Precise classification results
topic Artificial intelligence
Artificial neural networks
Geomechanical classification
Geomechanical model
Uncertainty
Classification
Rock mass
Underground mining
Geological alterations
Artificial neural networks
Input/output data
Training
Real-time
RMR index
Precise classification results
description This research aims to enhance the classification of the rock mass in underground mining, a common problem due to geological alterations that do not fit existing methods. Artificial neural networks are proposed as a solution, which use input/output data to learn and solve problems. The process involves gathering data on rock properties and training the neural networks to identify and classify various types of rock. Once trained, the neural networks can classify the rock mass in real-time during mine design and progression, adapting to different rock types with a low margin of error of 0.279% in determining the RMR index. This research overcomes the limitations of current classification methods, providing a more accurate and reliable solution for the classification of the rock mass in underground mining. In summary, artificial neural networks are utilized to improve the classification of rock mass in underground mining by adapting to geological changes and providing precise classification results.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-25T04:04:28Z
dc.date.available.none.fl_str_mv 2023-09-25T04:04:28Z
dc.date.issued.fl_str_mv 2023-09-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.1016/j.egyr.2023.05.246
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/668730
dc.identifier.eissn.none.fl_str_mv 23524847
dc.identifier.journal.es_PE.fl_str_mv Energy Reports
dc.identifier.eid.none.fl_str_mv 2-s2.0-85162096561
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85162096561
dc.identifier.pii.none.fl_str_mv S2352484723009903
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.1016/j.egyr.2023.05.246
23524847
Energy Reports
2-s2.0-85162096561
SCOPUS_ID:85162096561
S2352484723009903
0000 0001 2196 144X
url http://hdl.handle.net/10757/668730
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2352484723009903
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Elsevier Ltd
dc.source.es_PE.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
Repositorio Académico - UPC
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Energy Reports
dc.source.volume.none.fl_str_mv 9
dc.source.beginpage.none.fl_str_mv 376
dc.source.endpage.none.fl_str_mv 386
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/5/1-s2.0-S2352484723009903-main.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/4/1-s2.0-S2352484723009903-main.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/1/1-s2.0-S2352484723009903-main.pdf
bitstream.checksum.fl_str_mv 4783f7a6cfd7382210dcb65600925543
612165dd687aa2216a00e0bbe0ad1b64
8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
75db315a5b8cf25018e239f2b49ed81d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837186800714514432
spelling d1000bbbbee775f1a6eabe4091e547d430022608642007a8e239d8ef8a01031fb643677f87a08725e26e6f28cee946939a6500f1b29165990ab4ce165cbf28f5e4ccd9500eab45c535b46774d53b19b94802aaba8500Brousset, JulyansPehovaz, HumbertoQuispe, GrimaldoRaymundo, CarlosMoguerza, Javier M.2023-09-25T04:04:28Z2023-09-25T04:04:28Z2023-09-0110.1016/j.egyr.2023.05.246http://hdl.handle.net/10757/66873023524847Energy Reports2-s2.0-85162096561SCOPUS_ID:85162096561S23524847230099030000 0001 2196 144XThis research aims to enhance the classification of the rock mass in underground mining, a common problem due to geological alterations that do not fit existing methods. Artificial neural networks are proposed as a solution, which use input/output data to learn and solve problems. The process involves gathering data on rock properties and training the neural networks to identify and classify various types of rock. Once trained, the neural networks can classify the rock mass in real-time during mine design and progression, adapting to different rock types with a low margin of error of 0.279% in determining the RMR index. This research overcomes the limitations of current classification methods, providing a more accurate and reliable solution for the classification of the rock mass in underground mining. In summary, artificial neural networks are utilized to improve the classification of rock mass in underground mining by adapting to geological changes and providing precise classification results.ODS 9: Industria, Innovación e InfraestructuraODS 8: Trabajo Decente y Crecimiento EconómicoODS 12: Producción y Consumo Responsablesapplication/pdfengElsevier Ltdhttps://www.sciencedirect.com/science/article/pii/S2352484723009903info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Peruana de Ciencias Aplicadas (UPC)Repositorio Académico - UPCEnergy Reports9376386reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCArtificial intelligenceArtificial neural networksGeomechanical classificationGeomechanical modelUncertaintyClassificationRock massUnderground miningGeological alterationsArtificial neural networksInput/output dataTrainingReal-timeRMR indexPrecise classification resultsRock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian minesinfo:eu-repo/semantics/article2023-09-25T04:04:29ZTHUMBNAIL1-s2.0-S2352484723009903-main.pdf.jpg1-s2.0-S2352484723009903-main.pdf.jpgGenerated Thumbnailimage/jpeg87818https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/5/1-s2.0-S2352484723009903-main.pdf.jpg4783f7a6cfd7382210dcb65600925543MD55falseTEXT1-s2.0-S2352484723009903-main.pdf.txt1-s2.0-S2352484723009903-main.pdf.txtExtracted texttext/plain36775https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/4/1-s2.0-S2352484723009903-main.pdf.txt612165dd687aa2216a00e0bbe0ad1b64MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINAL1-s2.0-S2352484723009903-main.pdf1-s2.0-S2352484723009903-main.pdfapplication/pdf693066https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/1/1-s2.0-S2352484723009903-main.pdf75db315a5b8cf25018e239f2b49ed81dMD51true10757/668730oai:repositorioacademico.upc.edu.pe:10757/6687302024-07-20 04:27:30.764Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.949927
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).