Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines
Descripción del Articulo
This research aims to enhance the classification of the rock mass in underground mining, a common problem due to geological alterations that do not fit existing methods. Artificial neural networks are proposed as a solution, which use input/output data to learn and solve problems. The process involv...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/668730 |
Enlace del recurso: | http://hdl.handle.net/10757/668730 |
Nivel de acceso: | acceso abierto |
Materia: | Artificial intelligence Artificial neural networks Geomechanical classification Geomechanical model Uncertainty Classification Rock mass Underground mining Geological alterations Input/output data Training Real-time RMR index Precise classification results |
id |
UUPC_1da78b5d1474f21066c3edb79f5e8c14 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/668730 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines |
title |
Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines |
spellingShingle |
Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines Brousset, Julyans Artificial intelligence Artificial neural networks Geomechanical classification Geomechanical model Uncertainty Classification Rock mass Underground mining Geological alterations Artificial neural networks Input/output data Training Real-time RMR index Precise classification results |
title_short |
Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines |
title_full |
Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines |
title_fullStr |
Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines |
title_full_unstemmed |
Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines |
title_sort |
Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines |
author |
Brousset, Julyans |
author_facet |
Brousset, Julyans Pehovaz, Humberto Quispe, Grimaldo Raymundo, Carlos Moguerza, Javier M. |
author_role |
author |
author2 |
Pehovaz, Humberto Quispe, Grimaldo Raymundo, Carlos Moguerza, Javier M. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Brousset, Julyans Pehovaz, Humberto Quispe, Grimaldo Raymundo, Carlos Moguerza, Javier M. |
dc.subject.es_PE.fl_str_mv |
Artificial intelligence Artificial neural networks Geomechanical classification Geomechanical model Uncertainty Classification Rock mass Underground mining Geological alterations Artificial neural networks Input/output data Training Real-time RMR index Precise classification results |
topic |
Artificial intelligence Artificial neural networks Geomechanical classification Geomechanical model Uncertainty Classification Rock mass Underground mining Geological alterations Artificial neural networks Input/output data Training Real-time RMR index Precise classification results |
description |
This research aims to enhance the classification of the rock mass in underground mining, a common problem due to geological alterations that do not fit existing methods. Artificial neural networks are proposed as a solution, which use input/output data to learn and solve problems. The process involves gathering data on rock properties and training the neural networks to identify and classify various types of rock. Once trained, the neural networks can classify the rock mass in real-time during mine design and progression, adapting to different rock types with a low margin of error of 0.279% in determining the RMR index. This research overcomes the limitations of current classification methods, providing a more accurate and reliable solution for the classification of the rock mass in underground mining. In summary, artificial neural networks are utilized to improve the classification of rock mass in underground mining by adapting to geological changes and providing precise classification results. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-25T04:04:28Z |
dc.date.available.none.fl_str_mv |
2023-09-25T04:04:28Z |
dc.date.issued.fl_str_mv |
2023-09-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.egyr.2023.05.246 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/668730 |
dc.identifier.eissn.none.fl_str_mv |
23524847 |
dc.identifier.journal.es_PE.fl_str_mv |
Energy Reports |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85162096561 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85162096561 |
dc.identifier.pii.none.fl_str_mv |
S2352484723009903 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
10.1016/j.egyr.2023.05.246 23524847 Energy Reports 2-s2.0-85162096561 SCOPUS_ID:85162096561 S2352484723009903 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/668730 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2352484723009903 |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Elsevier Ltd |
dc.source.es_PE.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) Repositorio Académico - UPC |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Energy Reports |
dc.source.volume.none.fl_str_mv |
9 |
dc.source.beginpage.none.fl_str_mv |
376 |
dc.source.endpage.none.fl_str_mv |
386 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/5/1-s2.0-S2352484723009903-main.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/4/1-s2.0-S2352484723009903-main.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/1/1-s2.0-S2352484723009903-main.pdf |
bitstream.checksum.fl_str_mv |
4783f7a6cfd7382210dcb65600925543 612165dd687aa2216a00e0bbe0ad1b64 8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 75db315a5b8cf25018e239f2b49ed81d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837186800714514432 |
spelling |
d1000bbbbee775f1a6eabe4091e547d430022608642007a8e239d8ef8a01031fb643677f87a08725e26e6f28cee946939a6500f1b29165990ab4ce165cbf28f5e4ccd9500eab45c535b46774d53b19b94802aaba8500Brousset, JulyansPehovaz, HumbertoQuispe, GrimaldoRaymundo, CarlosMoguerza, Javier M.2023-09-25T04:04:28Z2023-09-25T04:04:28Z2023-09-0110.1016/j.egyr.2023.05.246http://hdl.handle.net/10757/66873023524847Energy Reports2-s2.0-85162096561SCOPUS_ID:85162096561S23524847230099030000 0001 2196 144XThis research aims to enhance the classification of the rock mass in underground mining, a common problem due to geological alterations that do not fit existing methods. Artificial neural networks are proposed as a solution, which use input/output data to learn and solve problems. The process involves gathering data on rock properties and training the neural networks to identify and classify various types of rock. Once trained, the neural networks can classify the rock mass in real-time during mine design and progression, adapting to different rock types with a low margin of error of 0.279% in determining the RMR index. This research overcomes the limitations of current classification methods, providing a more accurate and reliable solution for the classification of the rock mass in underground mining. In summary, artificial neural networks are utilized to improve the classification of rock mass in underground mining by adapting to geological changes and providing precise classification results.ODS 9: Industria, Innovación e InfraestructuraODS 8: Trabajo Decente y Crecimiento EconómicoODS 12: Producción y Consumo Responsablesapplication/pdfengElsevier Ltdhttps://www.sciencedirect.com/science/article/pii/S2352484723009903info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Peruana de Ciencias Aplicadas (UPC)Repositorio Académico - UPCEnergy Reports9376386reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCArtificial intelligenceArtificial neural networksGeomechanical classificationGeomechanical modelUncertaintyClassificationRock massUnderground miningGeological alterationsArtificial neural networksInput/output dataTrainingReal-timeRMR indexPrecise classification resultsRock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian minesinfo:eu-repo/semantics/article2023-09-25T04:04:29ZTHUMBNAIL1-s2.0-S2352484723009903-main.pdf.jpg1-s2.0-S2352484723009903-main.pdf.jpgGenerated Thumbnailimage/jpeg87818https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/5/1-s2.0-S2352484723009903-main.pdf.jpg4783f7a6cfd7382210dcb65600925543MD55falseTEXT1-s2.0-S2352484723009903-main.pdf.txt1-s2.0-S2352484723009903-main.pdf.txtExtracted texttext/plain36775https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/4/1-s2.0-S2352484723009903-main.pdf.txt612165dd687aa2216a00e0bbe0ad1b64MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINAL1-s2.0-S2352484723009903-main.pdf1-s2.0-S2352484723009903-main.pdfapplication/pdf693066https://repositorioacademico.upc.edu.pe/bitstream/10757/668730/1/1-s2.0-S2352484723009903-main.pdf75db315a5b8cf25018e239f2b49ed81dMD51true10757/668730oai:repositorioacademico.upc.edu.pe:10757/6687302024-07-20 04:27:30.764Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.949927 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).