Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines

Descripción del Articulo

This research aims to enhance the classification of the rock mass in underground mining, a common problem due to geological alterations that do not fit existing methods. Artificial neural networks are proposed as a solution, which use input/output data to learn and solve problems. The process involv...

Descripción completa

Detalles Bibliográficos
Autores: Brousset, Julyans, Pehovaz, Humberto, Quispe, Grimaldo, Raymundo, Carlos, Moguerza, Javier M.
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/668730
Enlace del recurso:http://hdl.handle.net/10757/668730
Nivel de acceso:acceso abierto
Materia:Artificial intelligence
Artificial neural networks
Geomechanical classification
Geomechanical model
Uncertainty
Classification
Rock mass
Underground mining
Geological alterations
Input/output data
Training
Real-time
RMR index
Precise classification results
Descripción
Sumario:This research aims to enhance the classification of the rock mass in underground mining, a common problem due to geological alterations that do not fit existing methods. Artificial neural networks are proposed as a solution, which use input/output data to learn and solve problems. The process involves gathering data on rock properties and training the neural networks to identify and classify various types of rock. Once trained, the neural networks can classify the rock mass in real-time during mine design and progression, adapting to different rock types with a low margin of error of 0.279% in determining the RMR index. This research overcomes the limitations of current classification methods, providing a more accurate and reliable solution for the classification of the rock mass in underground mining. In summary, artificial neural networks are utilized to improve the classification of rock mass in underground mining by adapting to geological changes and providing precise classification results.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).