An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals

Descripción del Articulo

This work proposes a computational algorithm which extracts the frequency, timings and signal segments corresponding to respiratory phases, through buccal and nasal acoustic signal processing. The proposal offers a computational solution for medical applications which require on-site or remote patie...

Descripción completa

Detalles Bibliográficos
Autores: Kemper, Guillermo, Oshita, Angel, Parra, Ricardo, Herrera, Carlos
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/668168
Enlace del recurso:http://hdl.handle.net/10757/668168
Nivel de acceso:acceso abierto
Materia:Breathing rate
Buccal sound
Envelope detection
Expiration time
Inspiration time
Nasal sound
Respiration
Computational algorithm
Respiratory phases
Buccal and nasal acoustic signal
Medical applications
Remote patient monitoring
Pulmonary pathologies
COVID-19
Signal acquisition
Signal processing techniques
Validation process and results
https://purl.org/pe-repo/ocde/ford#2.02.01
id UUPC_0e4b0a6487d62775154bad303d6bc90e
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/668168
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals
title An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals
spellingShingle An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals
Kemper, Guillermo
Breathing rate
Buccal sound
Envelope detection
Expiration time
Inspiration time
Nasal sound
Respiration
Computational algorithm
Respiratory phases
Buccal and nasal acoustic signal
Medical applications
Remote patient monitoring
Pulmonary pathologies
COVID-19
Signal acquisition
Signal processing techniques
Validation process and results
https://purl.org/pe-repo/ocde/ford#2.02.01
title_short An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals
title_full An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals
title_fullStr An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals
title_full_unstemmed An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals
title_sort An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals
author Kemper, Guillermo
author_facet Kemper, Guillermo
Oshita, Angel
Parra, Ricardo
Herrera, Carlos
author_role author
author2 Oshita, Angel
Parra, Ricardo
Herrera, Carlos
author2_role author
author
author
dc.contributor.author.fl_str_mv Kemper, Guillermo
Oshita, Angel
Parra, Ricardo
Herrera, Carlos
dc.subject.es_PE.fl_str_mv Breathing rate
Buccal sound
Envelope detection
Expiration time
Inspiration time
Nasal sound
Respiration
Computational algorithm
Respiratory phases
Buccal and nasal acoustic signal
Medical applications
Remote patient monitoring
Pulmonary pathologies
COVID-19
Signal acquisition
Signal processing techniques
Validation process and results
topic Breathing rate
Buccal sound
Envelope detection
Expiration time
Inspiration time
Nasal sound
Respiration
Computational algorithm
Respiratory phases
Buccal and nasal acoustic signal
Medical applications
Remote patient monitoring
Pulmonary pathologies
COVID-19
Signal acquisition
Signal processing techniques
Validation process and results
https://purl.org/pe-repo/ocde/ford#2.02.01
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.01
description This work proposes a computational algorithm which extracts the frequency, timings and signal segments corresponding to respiratory phases, through buccal and nasal acoustic signal processing. The proposal offers a computational solution for medical applications which require on-site or remote patient monitoring and evaluation of pulmonary pathologies, such as coronavirus disease 2019 (COVID-19). The state of the art presents a few respiratory evaluation proposals through buccal and nasal acoustic signals. Most proposals focus on respiratory signals acquired by a medical professional, using stethoscopes and electrodes located on the thorax. In this case the signal acquisition process is carried out through the use of a low cost and easy to use mask, which is equipped with strategically positioned and connected electret microphones, to maximize the proposed algorithm's performance. The algorithm employs signal processing techniques such as signal envelope detection, decimation, fast Fourier transform (FFT) and detection of peaks and time intervals via estimation of local maxima and minima in a signal's envelope. For the validation process a database of 32 signals of different respiratory modes and frequencies was used. Results show a maximum average error of 2.23% for breathing rate, 2.81% for expiration time and 3.47% for inspiration time.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-07T11:04:06Z
dc.date.available.none.fl_str_mv 2023-07-07T11:04:06Z
dc.date.issued.fl_str_mv 2023-02-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 20888708
dc.identifier.doi.none.fl_str_mv 10.11591/ijece.v13i1.pp358-373
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/668168
dc.identifier.journal.es_PE.fl_str_mv International Journal of Electrical and Computer Engineering
dc.identifier.eid.none.fl_str_mv 2-s2.0-85143875069
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85143875069
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 20888708
10.11591/ijece.v13i1.pp358-373
International Journal of Electrical and Computer Engineering
2-s2.0-85143875069
SCOPUS_ID:85143875069
0000 0001 2196 144X
url http://hdl.handle.net/10757/668168
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://ijece.iaescore.com/index.php/IJECE/article/view/27634
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Advanced Engineering and Science
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv International Journal of Electrical and Computer Engineering
dc.source.volume.none.fl_str_mv 13
dc.source.issue.none.fl_str_mv 1
dc.source.beginpage.none.fl_str_mv 358
dc.source.endpage.none.fl_str_mv 373
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/5/10.11591ijece.v13i1.pp358-373.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/4/10.11591ijece.v13i1.pp358-373.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/1/10.11591ijece.v13i1.pp358-373.pdf
bitstream.checksum.fl_str_mv 1d10126517ed909c88ecb27d1c9a0eda
13fade1e9651a6655ac474d0daef88bd
8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
47ecddf9fa903d4b880bf462d3d32e3d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Académico UPC
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1851775199197790208
spelling 81a224b2a512525985a4d85a3aa8658f50087e263e39638c964cff2bbefe272ed6b30002a2ff2743b14bc90fc61aea62d97338300ce685b46d3f2706d48a21d6841bb9fe4Kemper, GuillermoOshita, AngelParra, RicardoHerrera, Carlos2023-07-07T11:04:06Z2023-07-07T11:04:06Z2023-02-012088870810.11591/ijece.v13i1.pp358-373http://hdl.handle.net/10757/668168International Journal of Electrical and Computer Engineering2-s2.0-85143875069SCOPUS_ID:851438750690000 0001 2196 144XThis work proposes a computational algorithm which extracts the frequency, timings and signal segments corresponding to respiratory phases, through buccal and nasal acoustic signal processing. The proposal offers a computational solution for medical applications which require on-site or remote patient monitoring and evaluation of pulmonary pathologies, such as coronavirus disease 2019 (COVID-19). The state of the art presents a few respiratory evaluation proposals through buccal and nasal acoustic signals. Most proposals focus on respiratory signals acquired by a medical professional, using stethoscopes and electrodes located on the thorax. In this case the signal acquisition process is carried out through the use of a low cost and easy to use mask, which is equipped with strategically positioned and connected electret microphones, to maximize the proposed algorithm's performance. The algorithm employs signal processing techniques such as signal envelope detection, decimation, fast Fourier transform (FFT) and detection of peaks and time intervals via estimation of local maxima and minima in a signal's envelope. For the validation process a database of 32 signals of different respiratory modes and frequencies was used. Results show a maximum average error of 2.23% for breathing rate, 2.81% for expiration time and 3.47% for inspiration time.ODS 3: Salud y BienestarODS 9: Industria, Innovación e InfraestructuraODS 11: Ciudades y Comunidades Sosteniblesapplication/pdfengInstitute of Advanced Engineering and Sciencehttps://ijece.iaescore.com/index.php/IJECE/article/view/27634info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Breathing rateBuccal soundEnvelope detectionExpiration timeInspiration timeNasal soundRespirationComputational algorithmRespiratory phasesBuccal and nasal acoustic signalMedical applicationsRemote patient monitoringPulmonary pathologiesCOVID-19Signal acquisitionSignal processing techniquesValidation process and resultshttps://purl.org/pe-repo/ocde/ford#2.02.01An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signalsinfo:eu-repo/semantics/articleInternational Journal of Electrical and Computer Engineering131358373reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2023-07-07T11:04:07ZTHUMBNAIL10.11591ijece.v13i1.pp358-373.pdf.jpg10.11591ijece.v13i1.pp358-373.pdf.jpgGenerated Thumbnailimage/jpeg83279https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/5/10.11591ijece.v13i1.pp358-373.pdf.jpg1d10126517ed909c88ecb27d1c9a0edaMD55falseTEXT10.11591ijece.v13i1.pp358-373.pdf.txt10.11591ijece.v13i1.pp358-373.pdf.txtExtracted texttext/plain54362https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/4/10.11591ijece.v13i1.pp358-373.pdf.txt13fade1e9651a6655ac474d0daef88bdMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINAL10.11591ijece.v13i1.pp358-373.pdf10.11591ijece.v13i1.pp358-373.pdfapplication/pdf1090700https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/1/10.11591ijece.v13i1.pp358-373.pdf47ecddf9fa903d4b880bf462d3d32e3dMD51true10757/668168oai:repositorioacademico.upc.edu.pe:10757/6681682025-10-30 07:41:43.376Repositorio Académico UPCupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.446239
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).