An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals
Descripción del Articulo
This work proposes a computational algorithm which extracts the frequency, timings and signal segments corresponding to respiratory phases, through buccal and nasal acoustic signal processing. The proposal offers a computational solution for medical applications which require on-site or remote patie...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/668168 |
| Enlace del recurso: | http://hdl.handle.net/10757/668168 |
| Nivel de acceso: | acceso abierto |
| Materia: | Breathing rate Buccal sound Envelope detection Expiration time Inspiration time Nasal sound Respiration Computational algorithm Respiratory phases Buccal and nasal acoustic signal Medical applications Remote patient monitoring Pulmonary pathologies COVID-19 Signal acquisition Signal processing techniques Validation process and results https://purl.org/pe-repo/ocde/ford#2.02.01 |
| id |
UUPC_0e4b0a6487d62775154bad303d6bc90e |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/668168 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals |
| title |
An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals |
| spellingShingle |
An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals Kemper, Guillermo Breathing rate Buccal sound Envelope detection Expiration time Inspiration time Nasal sound Respiration Computational algorithm Respiratory phases Buccal and nasal acoustic signal Medical applications Remote patient monitoring Pulmonary pathologies COVID-19 Signal acquisition Signal processing techniques Validation process and results https://purl.org/pe-repo/ocde/ford#2.02.01 |
| title_short |
An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals |
| title_full |
An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals |
| title_fullStr |
An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals |
| title_full_unstemmed |
An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals |
| title_sort |
An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signals |
| author |
Kemper, Guillermo |
| author_facet |
Kemper, Guillermo Oshita, Angel Parra, Ricardo Herrera, Carlos |
| author_role |
author |
| author2 |
Oshita, Angel Parra, Ricardo Herrera, Carlos |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Kemper, Guillermo Oshita, Angel Parra, Ricardo Herrera, Carlos |
| dc.subject.es_PE.fl_str_mv |
Breathing rate Buccal sound Envelope detection Expiration time Inspiration time Nasal sound Respiration Computational algorithm Respiratory phases Buccal and nasal acoustic signal Medical applications Remote patient monitoring Pulmonary pathologies COVID-19 Signal acquisition Signal processing techniques Validation process and results |
| topic |
Breathing rate Buccal sound Envelope detection Expiration time Inspiration time Nasal sound Respiration Computational algorithm Respiratory phases Buccal and nasal acoustic signal Medical applications Remote patient monitoring Pulmonary pathologies COVID-19 Signal acquisition Signal processing techniques Validation process and results https://purl.org/pe-repo/ocde/ford#2.02.01 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.01 |
| description |
This work proposes a computational algorithm which extracts the frequency, timings and signal segments corresponding to respiratory phases, through buccal and nasal acoustic signal processing. The proposal offers a computational solution for medical applications which require on-site or remote patient monitoring and evaluation of pulmonary pathologies, such as coronavirus disease 2019 (COVID-19). The state of the art presents a few respiratory evaluation proposals through buccal and nasal acoustic signals. Most proposals focus on respiratory signals acquired by a medical professional, using stethoscopes and electrodes located on the thorax. In this case the signal acquisition process is carried out through the use of a low cost and easy to use mask, which is equipped with strategically positioned and connected electret microphones, to maximize the proposed algorithm's performance. The algorithm employs signal processing techniques such as signal envelope detection, decimation, fast Fourier transform (FFT) and detection of peaks and time intervals via estimation of local maxima and minima in a signal's envelope. For the validation process a database of 32 signals of different respiratory modes and frequencies was used. Results show a maximum average error of 2.23% for breathing rate, 2.81% for expiration time and 3.47% for inspiration time. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-07-07T11:04:06Z |
| dc.date.available.none.fl_str_mv |
2023-07-07T11:04:06Z |
| dc.date.issued.fl_str_mv |
2023-02-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
20888708 |
| dc.identifier.doi.none.fl_str_mv |
10.11591/ijece.v13i1.pp358-373 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/668168 |
| dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Electrical and Computer Engineering |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85143875069 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85143875069 |
| dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
| identifier_str_mv |
20888708 10.11591/ijece.v13i1.pp358-373 International Journal of Electrical and Computer Engineering 2-s2.0-85143875069 SCOPUS_ID:85143875069 0000 0001 2196 144X |
| url |
http://hdl.handle.net/10757/668168 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.url.es_PE.fl_str_mv |
https://ijece.iaescore.com/index.php/IJECE/article/view/27634 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Institute of Advanced Engineering and Science |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
International Journal of Electrical and Computer Engineering |
| dc.source.volume.none.fl_str_mv |
13 |
| dc.source.issue.none.fl_str_mv |
1 |
| dc.source.beginpage.none.fl_str_mv |
358 |
| dc.source.endpage.none.fl_str_mv |
373 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/5/10.11591ijece.v13i1.pp358-373.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/4/10.11591ijece.v13i1.pp358-373.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/1/10.11591ijece.v13i1.pp358-373.pdf |
| bitstream.checksum.fl_str_mv |
1d10126517ed909c88ecb27d1c9a0eda 13fade1e9651a6655ac474d0daef88bd 8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 47ecddf9fa903d4b880bf462d3d32e3d |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Académico UPC |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1851775199197790208 |
| spelling |
81a224b2a512525985a4d85a3aa8658f50087e263e39638c964cff2bbefe272ed6b30002a2ff2743b14bc90fc61aea62d97338300ce685b46d3f2706d48a21d6841bb9fe4Kemper, GuillermoOshita, AngelParra, RicardoHerrera, Carlos2023-07-07T11:04:06Z2023-07-07T11:04:06Z2023-02-012088870810.11591/ijece.v13i1.pp358-373http://hdl.handle.net/10757/668168International Journal of Electrical and Computer Engineering2-s2.0-85143875069SCOPUS_ID:851438750690000 0001 2196 144XThis work proposes a computational algorithm which extracts the frequency, timings and signal segments corresponding to respiratory phases, through buccal and nasal acoustic signal processing. The proposal offers a computational solution for medical applications which require on-site or remote patient monitoring and evaluation of pulmonary pathologies, such as coronavirus disease 2019 (COVID-19). The state of the art presents a few respiratory evaluation proposals through buccal and nasal acoustic signals. Most proposals focus on respiratory signals acquired by a medical professional, using stethoscopes and electrodes located on the thorax. In this case the signal acquisition process is carried out through the use of a low cost and easy to use mask, which is equipped with strategically positioned and connected electret microphones, to maximize the proposed algorithm's performance. The algorithm employs signal processing techniques such as signal envelope detection, decimation, fast Fourier transform (FFT) and detection of peaks and time intervals via estimation of local maxima and minima in a signal's envelope. For the validation process a database of 32 signals of different respiratory modes and frequencies was used. Results show a maximum average error of 2.23% for breathing rate, 2.81% for expiration time and 3.47% for inspiration time.ODS 3: Salud y BienestarODS 9: Industria, Innovación e InfraestructuraODS 11: Ciudades y Comunidades Sosteniblesapplication/pdfengInstitute of Advanced Engineering and Sciencehttps://ijece.iaescore.com/index.php/IJECE/article/view/27634info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Breathing rateBuccal soundEnvelope detectionExpiration timeInspiration timeNasal soundRespirationComputational algorithmRespiratory phasesBuccal and nasal acoustic signalMedical applicationsRemote patient monitoringPulmonary pathologiesCOVID-19Signal acquisitionSignal processing techniquesValidation process and resultshttps://purl.org/pe-repo/ocde/ford#2.02.01An algorithm for obtaining the frequency and the times of respiratory phases from nasal and oral acoustic signalsinfo:eu-repo/semantics/articleInternational Journal of Electrical and Computer Engineering131358373reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2023-07-07T11:04:07ZTHUMBNAIL10.11591ijece.v13i1.pp358-373.pdf.jpg10.11591ijece.v13i1.pp358-373.pdf.jpgGenerated Thumbnailimage/jpeg83279https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/5/10.11591ijece.v13i1.pp358-373.pdf.jpg1d10126517ed909c88ecb27d1c9a0edaMD55falseTEXT10.11591ijece.v13i1.pp358-373.pdf.txt10.11591ijece.v13i1.pp358-373.pdf.txtExtracted texttext/plain54362https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/4/10.11591ijece.v13i1.pp358-373.pdf.txt13fade1e9651a6655ac474d0daef88bdMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINAL10.11591ijece.v13i1.pp358-373.pdf10.11591ijece.v13i1.pp358-373.pdfapplication/pdf1090700https://repositorioacademico.upc.edu.pe/bitstream/10757/668168/1/10.11591ijece.v13i1.pp358-373.pdf47ecddf9fa903d4b880bf462d3d32e3dMD51true10757/668168oai:repositorioacademico.upc.edu.pe:10757/6681682025-10-30 07:41:43.376Repositorio Académico UPCupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.446239 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).