Caracterización óptica, eléctrica y fotovoltaica de nanopartículas de ferrita de bismuto (α-BiFeO3), producido por combustión en solución
Descripción del Articulo
El presente trabajo de investigación muestra la caracterización óptica, eléctrica y fotovoltaica de polvos de Ferrita de Bismuto (BiFeO3), semiconductor con estructura tipo perovskita y grupo espacial R3c, con el propósito de reproducir el efecto fotovoltaico en un material multiferroico. La síntesi...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2019 |
Institución: | Universidad Nacional de Ingeniería |
Repositorio: | UNI-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:cybertesis.uni.edu.pe:20.500.14076/20672 |
Enlace del recurso: | http://hdl.handle.net/20.500.14076/20672 |
Nivel de acceso: | acceso abierto |
Materia: | Difracción de rayos X Efecto fotovoltaico Microscopía electrónica https://purl.org/pe-repo/ocde/ford#1.03.03 |
Sumario: | El presente trabajo de investigación muestra la caracterización óptica, eléctrica y fotovoltaica de polvos de Ferrita de Bismuto (BiFeO3), semiconductor con estructura tipo perovskita y grupo espacial R3c, con el propósito de reproducir el efecto fotovoltaico en un material multiferroico. La síntesis fue realizada por medio del método de combustión en solución empleando urea y glicina como combustibles sólidos. Se analizó el material a diferentes temperaturas de tratamiento térmico, logrando una mejor cristalinidad de los polvos de BiFeO3 a 600°C. A través de la caracterización por difracción de rayos X (DRX), se observó que se obtuvo la fase BiFeO3 pura; por espectroscopia de rayos X por dispersión en energía (EDS), se identificaron la presencia de todos los elementos que los componen Bi (19.58 ± 0.42%), Fe (21.70 ± 1.70%) y O (58.72 ±1.28%) respectivamente como mejores resultados; mediante microscopía electrónica de barrido (SEM), se obtuvieron las imágenes microscópicas del material, que presentan un crecimiento de nanopartículas en forma elípticos y hexagonales en base al incremento de tratamiento térmico y por microscopia electrónica de transmisión (TEM) se confirma las presencia de nanopartículas, con tamaños aproximadamente entre 40 - 100 nm. Con distancias interplanares entre 1.71 - 2.64 Ȧ. En la caracterización óptica, por medio de espectroscopia UV-Visible, se encontró la banda prohibida (Band Gap) en los polvos de BiFeO3 en el rango de 2.14 – 2.48 eV, las cuales presentan una fuerte absorción de longitud de onda entre 400 – 525 nm de la luz visible. En la caracterización eléctrica para la curva densidad de corriente y voltaje (J-V) mostró una gráfica lineal donde se encontró un voltaje de circuito abierto VOC = 3,4 V, los valores de resistencia y resistividad obtenidos mediante el método de 4 puntas se encuentran en el rango de los semiconductores 108 - 10−3 Ω.cm., obteniendo como mejor resultado ρ = 0.48×106 Ω.cm. El efecto fotovoltaico se midió mediante la adquisición de las características de corriente - intensidad bajo una iluminación de un láser con una longitud de onda de 405 nm. (hυ = 3.06 eV), generando una corriente de 0.2 nA. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).