Un indicador de complejidad en sistemas dinámicos

Descripción del Articulo

Inicialmente, consideramos la noción de medida F-expansiva para flujos (donde F es un subconjunto del conjunto de reparametrizaciones H) generalizando la definida por Carrasco y Morales en [17]. A su vez, analizamos el comportamiento topológico del conjunto de medidas F-expansivas obteniendo condici...

Descripción completa

Detalles Bibliográficos
Autor: Villavicencio Fernández, Helmuth
Formato: tesis doctoral
Fecha de Publicación:2018
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/19046
Enlace del recurso:http://hdl.handle.net/20.500.14076/19046
Nivel de acceso:acceso abierto
Materia:Sistemas dinámicos
Matemática aplicada
Sistemas continuos
https://purl.org/pe-repo/ocde/ford#1.01.01
Descripción
Sumario:Inicialmente, consideramos la noción de medida F-expansiva para flujos (donde F es un subconjunto del conjunto de reparametrizaciones H) generalizando la definida por Carrasco y Morales en [17]. A su vez, analizamos el comportamiento topológico del conjunto de medidas F-expansivas obteniendo condiciones suficientes para que este sea un conjunto Gδσ. Seguidamente, introducimos el concepto de punto F-sombreable para flujos y probamos que esta noción satisface propiedades que extienden las dadas en [30]. Además, mejoramos la clasificación topológica del conjunto de puntos sombreables, dada por Kawaguchi en [20], al probar que este es un sub-conjunto Gδ. También, probamos que el atractor geométrico de Lorenz, cuyo mapeo de retorno f satisfaga f(0) ≠ 0 ó f(1) ≠ 1, no admite puntos F-sombreables. Finalmente, definimos la noción de complejidad para flujos que actuará como un indicador de complejidad más fino que la entropía topológica, siempre que existan medidas positivamente F-expansivas (extendiendo los resultados de [29]). Este indicador depende tan solo del tiempo-uno del flujo, es invariante por conjugaciones y suspensiones. Adicionalmente, obtenemos un estimado de las ´orbitas periódicas de un sistema expansivo cuyos puntos F-sombreables contienen al conjunto no errante y admite complejidad.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).