Support vector machine with optimized parameters for the classification of patients with COVID-19
Descripción del Articulo
Introduction: The COVID-19 pandemic has had a significant impact worldwide, especially in health, where it is crucial to identify patients at high risk of clinical deterioration early. Objective: This study aimed to design a model based on the support vector machine (SVM) algorithm, optimizing its p...
| Autores: | , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/7844 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/7844 https://doi.org/10.4108/eetpht.9.3472 |
| Nivel de acceso: | acceso abierto |
| Materia: | Machine learning Epidemiological models COVID-19 https://purl.org/pe-repo/ocde/ford#3.00.00 |
| id |
UTPD_fefd7a826d97dc6700613fe2fffa86c1 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/7844 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Support vector machine with optimized parameters for the classification of patients with COVID-19 |
| title |
Support vector machine with optimized parameters for the classification of patients with COVID-19 |
| spellingShingle |
Support vector machine with optimized parameters for the classification of patients with COVID-19 Marín Rodríguez, William Joel Machine learning Epidemiological models COVID-19 https://purl.org/pe-repo/ocde/ford#3.00.00 |
| title_short |
Support vector machine with optimized parameters for the classification of patients with COVID-19 |
| title_full |
Support vector machine with optimized parameters for the classification of patients with COVID-19 |
| title_fullStr |
Support vector machine with optimized parameters for the classification of patients with COVID-19 |
| title_full_unstemmed |
Support vector machine with optimized parameters for the classification of patients with COVID-19 |
| title_sort |
Support vector machine with optimized parameters for the classification of patients with COVID-19 |
| author |
Marín Rodríguez, William Joel |
| author_facet |
Marín Rodríguez, William Joel Andrade-Girón, Daniel Carreño-Cisneros, Edgardo Mejía-Dominguez, Cecilia Velásquez-Gamarra, Julia Villarreal-Torres, Henry Meleán-Romero, Rosana |
| author_role |
author |
| author2 |
Andrade-Girón, Daniel Carreño-Cisneros, Edgardo Mejía-Dominguez, Cecilia Velásquez-Gamarra, Julia Villarreal-Torres, Henry Meleán-Romero, Rosana |
| author2_role |
author author author author author author |
| dc.contributor.author.fl_str_mv |
Marín Rodríguez, William Joel Andrade-Girón, Daniel Carreño-Cisneros, Edgardo Mejía-Dominguez, Cecilia Velásquez-Gamarra, Julia Villarreal-Torres, Henry Meleán-Romero, Rosana |
| dc.subject.es_PE.fl_str_mv |
Machine learning Epidemiological models COVID-19 |
| topic |
Machine learning Epidemiological models COVID-19 https://purl.org/pe-repo/ocde/ford#3.00.00 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#3.00.00 |
| description |
Introduction: The COVID-19 pandemic has had a significant impact worldwide, especially in health, where it is crucial to identify patients at high risk of clinical deterioration early. Objective: This study aimed to design a model based on the support vector machine (SVM) algorithm, optimizing its parameters to classify patients with suspected COVID-19. Methodology: One thousand patient records from two health establishments in Peru were used. After applying data preprocessing and variable engineering, the sample was reduced to 700 records. The construction of the model followed a machine learning methodology, using the linear, polynomial, sigmoid, and radial kernel functions, along with their estimated optimal parameters, to ensure the best performance. Results: The results revealed that the SVM model with the linear and sigmoid kernels presented an accuracy of 95%, surpassing the polynomial kernel with 94% and the radial kernel (RBF) with 94%. In addition, a value of 0.92 was obtained for Cohen's kappa, which measures the degree of agreement between the predictions of the machine learning model and the actual results, which indicates an excellent deal for the linear and sigmoid kernel. Conclusions: In conclusion, the SVM model with linear and sigmoid kernels could be a valuable tool for identifying patients at high risk of clinical deterioration in the context of the COVID-19 pandemic. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-11-07T19:51:25Z |
| dc.date.available.none.fl_str_mv |
2023-11-07T19:51:25Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2411-7145 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/7844 |
| dc.identifier.journal.es_PE.fl_str_mv |
EAI Endorsed Transactions on Pervasive Health and Technology |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.4108/eetpht.9.3472 |
| identifier_str_mv |
2411-7145 EAI Endorsed Transactions on Pervasive Health and Technology |
| url |
https://hdl.handle.net/20.500.12867/7844 https://doi.org/10.4108/eetpht.9.3472 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofseries.none.fl_str_mv |
EAI Endorsed Transactions on Pervasive Health and Technology;vol. 9 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
European Alliance for Innovation |
| dc.publisher.country.es_PE.fl_str_mv |
BE |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/567716a1-91e9-498f-a994-68eba202bd9b/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2817fd1b-9614-481c-b25b-3f072d08ddb9/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/06536ec5-77ac-4269-a745-24338dd6779f/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/f30a7be6-3c66-4195-8bba-4ceaa335041c/download |
| bitstream.checksum.fl_str_mv |
977abb244e1fc3a509198994a9dd8fdb 8a4605be74aa9ea9d79846c1fba20a33 73bd79b8fbb6b203a40dd59ca409c3d0 5b3d189d21bef68f0f404d541a14e76e |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1856036097868431360 |
| spelling |
Marín Rodríguez, William JoelAndrade-Girón, DanielCarreño-Cisneros, EdgardoMejía-Dominguez, CeciliaVelásquez-Gamarra, JuliaVillarreal-Torres, HenryMeleán-Romero, Rosana2023-11-07T19:51:25Z2023-11-07T19:51:25Z20232411-7145https://hdl.handle.net/20.500.12867/7844EAI Endorsed Transactions on Pervasive Health and Technologyhttps://doi.org/10.4108/eetpht.9.3472Introduction: The COVID-19 pandemic has had a significant impact worldwide, especially in health, where it is crucial to identify patients at high risk of clinical deterioration early. Objective: This study aimed to design a model based on the support vector machine (SVM) algorithm, optimizing its parameters to classify patients with suspected COVID-19. Methodology: One thousand patient records from two health establishments in Peru were used. After applying data preprocessing and variable engineering, the sample was reduced to 700 records. The construction of the model followed a machine learning methodology, using the linear, polynomial, sigmoid, and radial kernel functions, along with their estimated optimal parameters, to ensure the best performance. Results: The results revealed that the SVM model with the linear and sigmoid kernels presented an accuracy of 95%, surpassing the polynomial kernel with 94% and the radial kernel (RBF) with 94%. In addition, a value of 0.92 was obtained for Cohen's kappa, which measures the degree of agreement between the predictions of the machine learning model and the actual results, which indicates an excellent deal for the linear and sigmoid kernel. Conclusions: In conclusion, the SVM model with linear and sigmoid kernels could be a valuable tool for identifying patients at high risk of clinical deterioration in the context of the COVID-19 pandemic.Campus Virtualapplication/pdfengEuropean Alliance for InnovationBEEAI Endorsed Transactions on Pervasive Health and Technology;vol. 9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningEpidemiological modelsCOVID-19https://purl.org/pe-repo/ocde/ford#3.00.00Support vector machine with optimized parameters for the classification of patients with COVID-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALW.Marin_Articulo_2023.pdfW.Marin_Articulo_2023.pdfapplication/pdf202576https://repositorio.utp.edu.pe/backend/api/core/bitstreams/567716a1-91e9-498f-a994-68eba202bd9b/download977abb244e1fc3a509198994a9dd8fdbMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2817fd1b-9614-481c-b25b-3f072d08ddb9/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTW.Marin_Articulo_2023.pdf.txtW.Marin_Articulo_2023.pdf.txtExtracted texttext/plain53811https://repositorio.utp.edu.pe/backend/api/core/bitstreams/06536ec5-77ac-4269-a745-24338dd6779f/download73bd79b8fbb6b203a40dd59ca409c3d0MD55THUMBNAILW.Marin_Articulo_2023.pdf.jpgW.Marin_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg43476https://repositorio.utp.edu.pe/backend/api/core/bitstreams/f30a7be6-3c66-4195-8bba-4ceaa335041c/download5b3d189d21bef68f0f404d541a14e76eMD5620.500.12867/7844oai:repositorio.utp.edu.pe:20.500.12867/78442025-11-30 15:56:23.904http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.922529 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).