Support vector machine with optimized parameters for the classification of patients with COVID-19

Descripción del Articulo

Introduction: The COVID-19 pandemic has had a significant impact worldwide, especially in health, where it is crucial to identify patients at high risk of clinical deterioration early. Objective: This study aimed to design a model based on the support vector machine (SVM) algorithm, optimizing its p...

Descripción completa

Detalles Bibliográficos
Autores: Marín Rodríguez, William Joel, Andrade-Girón, Daniel, Carreño-Cisneros, Edgardo, Mejía-Dominguez, Cecilia, Velásquez-Gamarra, Julia, Villarreal-Torres, Henry, Meleán-Romero, Rosana
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/7844
Enlace del recurso:https://hdl.handle.net/20.500.12867/7844
https://doi.org/10.4108/eetpht.9.3472
Nivel de acceso:acceso abierto
Materia:Machine learning
Epidemiological models
COVID-19
https://purl.org/pe-repo/ocde/ford#3.00.00
id UTPD_fefd7a826d97dc6700613fe2fffa86c1
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/7844
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Support vector machine with optimized parameters for the classification of patients with COVID-19
title Support vector machine with optimized parameters for the classification of patients with COVID-19
spellingShingle Support vector machine with optimized parameters for the classification of patients with COVID-19
Marín Rodríguez, William Joel
Machine learning
Epidemiological models
COVID-19
https://purl.org/pe-repo/ocde/ford#3.00.00
title_short Support vector machine with optimized parameters for the classification of patients with COVID-19
title_full Support vector machine with optimized parameters for the classification of patients with COVID-19
title_fullStr Support vector machine with optimized parameters for the classification of patients with COVID-19
title_full_unstemmed Support vector machine with optimized parameters for the classification of patients with COVID-19
title_sort Support vector machine with optimized parameters for the classification of patients with COVID-19
author Marín Rodríguez, William Joel
author_facet Marín Rodríguez, William Joel
Andrade-Girón, Daniel
Carreño-Cisneros, Edgardo
Mejía-Dominguez, Cecilia
Velásquez-Gamarra, Julia
Villarreal-Torres, Henry
Meleán-Romero, Rosana
author_role author
author2 Andrade-Girón, Daniel
Carreño-Cisneros, Edgardo
Mejía-Dominguez, Cecilia
Velásquez-Gamarra, Julia
Villarreal-Torres, Henry
Meleán-Romero, Rosana
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Marín Rodríguez, William Joel
Andrade-Girón, Daniel
Carreño-Cisneros, Edgardo
Mejía-Dominguez, Cecilia
Velásquez-Gamarra, Julia
Villarreal-Torres, Henry
Meleán-Romero, Rosana
dc.subject.es_PE.fl_str_mv Machine learning
Epidemiological models
COVID-19
topic Machine learning
Epidemiological models
COVID-19
https://purl.org/pe-repo/ocde/ford#3.00.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#3.00.00
description Introduction: The COVID-19 pandemic has had a significant impact worldwide, especially in health, where it is crucial to identify patients at high risk of clinical deterioration early. Objective: This study aimed to design a model based on the support vector machine (SVM) algorithm, optimizing its parameters to classify patients with suspected COVID-19. Methodology: One thousand patient records from two health establishments in Peru were used. After applying data preprocessing and variable engineering, the sample was reduced to 700 records. The construction of the model followed a machine learning methodology, using the linear, polynomial, sigmoid, and radial kernel functions, along with their estimated optimal parameters, to ensure the best performance. Results: The results revealed that the SVM model with the linear and sigmoid kernels presented an accuracy of 95%, surpassing the polynomial kernel with 94% and the radial kernel (RBF) with 94%. In addition, a value of 0.92 was obtained for Cohen's kappa, which measures the degree of agreement between the predictions of the machine learning model and the actual results, which indicates an excellent deal for the linear and sigmoid kernel. Conclusions: In conclusion, the SVM model with linear and sigmoid kernels could be a valuable tool for identifying patients at high risk of clinical deterioration in the context of the COVID-19 pandemic.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-07T19:51:25Z
dc.date.available.none.fl_str_mv 2023-11-07T19:51:25Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2411-7145
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/7844
dc.identifier.journal.es_PE.fl_str_mv EAI Endorsed Transactions on Pervasive Health and Technology
dc.identifier.doi.none.fl_str_mv https://doi.org/10.4108/eetpht.9.3472
identifier_str_mv 2411-7145
EAI Endorsed Transactions on Pervasive Health and Technology
url https://hdl.handle.net/20.500.12867/7844
https://doi.org/10.4108/eetpht.9.3472
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv EAI Endorsed Transactions on Pervasive Health and Technology;vol. 9
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv European Alliance for Innovation
dc.publisher.country.es_PE.fl_str_mv BE
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/567716a1-91e9-498f-a994-68eba202bd9b/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2817fd1b-9614-481c-b25b-3f072d08ddb9/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/06536ec5-77ac-4269-a745-24338dd6779f/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/f30a7be6-3c66-4195-8bba-4ceaa335041c/download
bitstream.checksum.fl_str_mv 977abb244e1fc3a509198994a9dd8fdb
8a4605be74aa9ea9d79846c1fba20a33
73bd79b8fbb6b203a40dd59ca409c3d0
5b3d189d21bef68f0f404d541a14e76e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1856036097868431360
spelling Marín Rodríguez, William JoelAndrade-Girón, DanielCarreño-Cisneros, EdgardoMejía-Dominguez, CeciliaVelásquez-Gamarra, JuliaVillarreal-Torres, HenryMeleán-Romero, Rosana2023-11-07T19:51:25Z2023-11-07T19:51:25Z20232411-7145https://hdl.handle.net/20.500.12867/7844EAI Endorsed Transactions on Pervasive Health and Technologyhttps://doi.org/10.4108/eetpht.9.3472Introduction: The COVID-19 pandemic has had a significant impact worldwide, especially in health, where it is crucial to identify patients at high risk of clinical deterioration early. Objective: This study aimed to design a model based on the support vector machine (SVM) algorithm, optimizing its parameters to classify patients with suspected COVID-19. Methodology: One thousand patient records from two health establishments in Peru were used. After applying data preprocessing and variable engineering, the sample was reduced to 700 records. The construction of the model followed a machine learning methodology, using the linear, polynomial, sigmoid, and radial kernel functions, along with their estimated optimal parameters, to ensure the best performance. Results: The results revealed that the SVM model with the linear and sigmoid kernels presented an accuracy of 95%, surpassing the polynomial kernel with 94% and the radial kernel (RBF) with 94%. In addition, a value of 0.92 was obtained for Cohen's kappa, which measures the degree of agreement between the predictions of the machine learning model and the actual results, which indicates an excellent deal for the linear and sigmoid kernel. Conclusions: In conclusion, the SVM model with linear and sigmoid kernels could be a valuable tool for identifying patients at high risk of clinical deterioration in the context of the COVID-19 pandemic.Campus Virtualapplication/pdfengEuropean Alliance for InnovationBEEAI Endorsed Transactions on Pervasive Health and Technology;vol. 9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningEpidemiological modelsCOVID-19https://purl.org/pe-repo/ocde/ford#3.00.00Support vector machine with optimized parameters for the classification of patients with COVID-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALW.Marin_Articulo_2023.pdfW.Marin_Articulo_2023.pdfapplication/pdf202576https://repositorio.utp.edu.pe/backend/api/core/bitstreams/567716a1-91e9-498f-a994-68eba202bd9b/download977abb244e1fc3a509198994a9dd8fdbMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2817fd1b-9614-481c-b25b-3f072d08ddb9/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTW.Marin_Articulo_2023.pdf.txtW.Marin_Articulo_2023.pdf.txtExtracted texttext/plain53811https://repositorio.utp.edu.pe/backend/api/core/bitstreams/06536ec5-77ac-4269-a745-24338dd6779f/download73bd79b8fbb6b203a40dd59ca409c3d0MD55THUMBNAILW.Marin_Articulo_2023.pdf.jpgW.Marin_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg43476https://repositorio.utp.edu.pe/backend/api/core/bitstreams/f30a7be6-3c66-4195-8bba-4ceaa335041c/download5b3d189d21bef68f0f404d541a14e76eMD5620.500.12867/7844oai:repositorio.utp.edu.pe:20.500.12867/78442025-11-30 15:56:23.904http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.922529
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).