Support vector machine with optimized parameters for the classification of patients with COVID-19

Descripción del Articulo

Introduction: The COVID-19 pandemic has had a significant impact worldwide, especially in health, where it is crucial to identify patients at high risk of clinical deterioration early. Objective: This study aimed to design a model based on the support vector machine (SVM) algorithm, optimizing its p...

Descripción completa

Detalles Bibliográficos
Autores: Marín Rodríguez, William Joel, Andrade-Girón, Daniel, Carreño-Cisneros, Edgardo, Mejía-Dominguez, Cecilia, Velásquez-Gamarra, Julia, Villarreal-Torres, Henry, Meleán-Romero, Rosana
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/7844
Enlace del recurso:https://hdl.handle.net/20.500.12867/7844
https://doi.org/10.4108/eetpht.9.3472
Nivel de acceso:acceso abierto
Materia:Machine learning
Epidemiological models
COVID-19
https://purl.org/pe-repo/ocde/ford#3.00.00
Descripción
Sumario:Introduction: The COVID-19 pandemic has had a significant impact worldwide, especially in health, where it is crucial to identify patients at high risk of clinical deterioration early. Objective: This study aimed to design a model based on the support vector machine (SVM) algorithm, optimizing its parameters to classify patients with suspected COVID-19. Methodology: One thousand patient records from two health establishments in Peru were used. After applying data preprocessing and variable engineering, the sample was reduced to 700 records. The construction of the model followed a machine learning methodology, using the linear, polynomial, sigmoid, and radial kernel functions, along with their estimated optimal parameters, to ensure the best performance. Results: The results revealed that the SVM model with the linear and sigmoid kernels presented an accuracy of 95%, surpassing the polynomial kernel with 94% and the radial kernel (RBF) with 94%. In addition, a value of 0.92 was obtained for Cohen's kappa, which measures the degree of agreement between the predictions of the machine learning model and the actual results, which indicates an excellent deal for the linear and sigmoid kernel. Conclusions: In conclusion, the SVM model with linear and sigmoid kernels could be a valuable tool for identifying patients at high risk of clinical deterioration in the context of the COVID-19 pandemic.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).