Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection
Descripción del Articulo
Manual identification of diseases in crops is costly and subjective, driving the need for automated systems for accurate detection in the field. This requires the use of technologies based on the integration of IoT and deep learning models to improve the assessment capacity of crop health and leaf d...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14644 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14644 https://doi.org/10.37394/232017.2024.15.17 |
| Nivel de acceso: | acceso abierto |
| Materia: | Computer vision Segmentation Leaf health Precision agriculture https://purl.org/pe-repo/ocde/ford#2.11.03 |
| id |
UTPD_d17b26645c72ece999c478bff99f0041 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14644 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection |
| title |
Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection |
| spellingShingle |
Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection Yauri, Ricardo Computer vision Segmentation Leaf health Precision agriculture https://purl.org/pe-repo/ocde/ford#2.11.03 |
| title_short |
Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection |
| title_full |
Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection |
| title_fullStr |
Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection |
| title_full_unstemmed |
Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection |
| title_sort |
Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection |
| author |
Yauri, Ricardo |
| author_facet |
Yauri, Ricardo Castro, Antero Espino, Rafael |
| author_role |
author |
| author2 |
Castro, Antero Espino, Rafael |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Yauri, Ricardo Castro, Antero Espino, Rafael |
| dc.subject.es_PE.fl_str_mv |
Computer vision Segmentation Leaf health Precision agriculture |
| topic |
Computer vision Segmentation Leaf health Precision agriculture https://purl.org/pe-repo/ocde/ford#2.11.03 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.03 |
| description |
Manual identification of diseases in crops is costly and subjective, driving the need for automated systems for accurate detection in the field. This requires the use of technologies based on the integration of IoT and deep learning models to improve the assessment capacity of crop health and leaf disease, with continuous monitoring. The literature review highlights technological solutions that include weed and disease detection using artificial intelligence and autonomous systems, as well as semantic segmentation algorithms to locate diseases in field images whose processes can be improved with systems based on microcontrollers and sensors. This research implements a leaf health monitoring system using IoT and AI technologies, with the development of an IoT device with a camera, the configuration of an MQTT broker in NODE-Red, and the implementation of a script in Python for leaf instance segmentation and image display. As a result, it is highlighted that image analysis, with the Python tool, allowed obtaining valuable information for precision agriculture, while the visualization or messaging interface allows health monitoring and management of crops. In conclusion, the System adequately performs image capture, processing, and transmission, being a contributes to precision agriculture solutions, considering that this can be improved with the integration of more complex deep learning algorithms to increase precision. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-14T15:26:09Z |
| dc.date.available.none.fl_str_mv |
2025-11-14T15:26:09Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2415-1513 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14644 |
| dc.identifier.journal.es_PE.fl_str_mv |
WSEAS Transactions on Electronics |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.37394/232017.2024.15.17 |
| identifier_str_mv |
2415-1513 WSEAS Transactions on Electronics |
| url |
https://hdl.handle.net/20.500.12867/14644 https://doi.org/10.37394/232017.2024.15.17 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
World Scientific and Engineering Academy and Society |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c9a9469b-435e-41aa-8a25-3e1e20e8c386/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0f1e5535-03d7-4c4b-859b-fef794408309/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/790e32f8-98ce-4e2c-8b6f-4d1aa8b28363/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/d07c2e9b-cd16-4f83-8aa6-37ee8c72ed3e/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3712d450-6eb2-47aa-ac9f-33085fe2e5b9/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/9f5f386f-c2f6-497d-bcfc-689e4cb64db1/download |
| bitstream.checksum.fl_str_mv |
83f994543bedfa2d30f11efed31d6193 8a4605be74aa9ea9d79846c1fba20a33 ef6964030fa4c7bfc8d8115c91590dbd 1fa77eb0e49e66444c855247cfd51b13 df7e435fa69f56aac1aba45d53257bfa ade7e80619dce879c2f5dbfea32cfa00 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852865381788549120 |
| spelling |
Yauri, RicardoCastro, AnteroEspino, Rafael2025-11-14T15:26:09Z2025-11-14T15:26:09Z20242415-1513https://hdl.handle.net/20.500.12867/14644WSEAS Transactions on Electronicshttps://doi.org/10.37394/232017.2024.15.17Manual identification of diseases in crops is costly and subjective, driving the need for automated systems for accurate detection in the field. This requires the use of technologies based on the integration of IoT and deep learning models to improve the assessment capacity of crop health and leaf disease, with continuous monitoring. The literature review highlights technological solutions that include weed and disease detection using artificial intelligence and autonomous systems, as well as semantic segmentation algorithms to locate diseases in field images whose processes can be improved with systems based on microcontrollers and sensors. This research implements a leaf health monitoring system using IoT and AI technologies, with the development of an IoT device with a camera, the configuration of an MQTT broker in NODE-Red, and the implementation of a script in Python for leaf instance segmentation and image display. As a result, it is highlighted that image analysis, with the Python tool, allowed obtaining valuable information for precision agriculture, while the visualization or messaging interface allows health monitoring and management of crops. In conclusion, the System adequately performs image capture, processing, and transmission, being a contributes to precision agriculture solutions, considering that this can be improved with the integration of more complex deep learning algorithms to increase precision.Campus San Juan de Luriganchoapplication/pdfengWorld Scientific and Engineering Academy and Societyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPComputer visionSegmentationLeaf healthPrecision agriculturehttps://purl.org/pe-repo/ocde/ford#2.11.03Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detectioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALR.Yauri_A.Castro_R.Espino_Articulo_2024.pdfR.Yauri_A.Castro_R.Espino_Articulo_2024.pdfapplication/pdf2365784https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c9a9469b-435e-41aa-8a25-3e1e20e8c386/download83f994543bedfa2d30f11efed31d6193MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0f1e5535-03d7-4c4b-859b-fef794408309/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTYauri.R_Castro.A_Espino.R_Articulo_2024.pdf.txtYauri.R_Castro.A_Espino.R_Articulo_2024.pdf.txtExtracted texttext/plain32418https://repositorio.utp.edu.pe/backend/api/core/bitstreams/790e32f8-98ce-4e2c-8b6f-4d1aa8b28363/downloadef6964030fa4c7bfc8d8115c91590dbdMD53R.Yauri_A.Castro_R.Espino_Articulo_2024.pdf.txtR.Yauri_A.Castro_R.Espino_Articulo_2024.pdf.txtExtracted texttext/plain33122https://repositorio.utp.edu.pe/backend/api/core/bitstreams/d07c2e9b-cd16-4f83-8aa6-37ee8c72ed3e/download1fa77eb0e49e66444c855247cfd51b13MD57THUMBNAILYauri.R_Castro.A_Espino.R_Articulo_2024.pdf.jpgYauri.R_Castro.A_Espino.R_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg24951https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3712d450-6eb2-47aa-ac9f-33085fe2e5b9/downloaddf7e435fa69f56aac1aba45d53257bfaMD54R.Yauri_A.Castro_R.Espino_Articulo_2024.pdf.jpgR.Yauri_A.Castro_R.Espino_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg47973https://repositorio.utp.edu.pe/backend/api/core/bitstreams/9f5f386f-c2f6-497d-bcfc-689e4cb64db1/downloadade7e80619dce879c2f5dbfea32cfa00MD5820.500.12867/14644oai:repositorio.utp.edu.pe:20.500.12867/146442025-11-30 16:28:08.059https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.9061165 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).