Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection

Descripción del Articulo

Manual identification of diseases in crops is costly and subjective, driving the need for automated systems for accurate detection in the field. This requires the use of technologies based on the integration of IoT and deep learning models to improve the assessment capacity of crop health and leaf d...

Descripción completa

Detalles Bibliográficos
Autores: Yauri, Ricardo, Castro, Antero, Espino, Rafael
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14644
Enlace del recurso:https://hdl.handle.net/20.500.12867/14644
https://doi.org/10.37394/232017.2024.15.17
Nivel de acceso:acceso abierto
Materia:Computer vision
Segmentation
Leaf health
Precision agriculture
https://purl.org/pe-repo/ocde/ford#2.11.03
id UTPD_d17b26645c72ece999c478bff99f0041
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14644
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection
title Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection
spellingShingle Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection
Yauri, Ricardo
Computer vision
Segmentation
Leaf health
Precision agriculture
https://purl.org/pe-repo/ocde/ford#2.11.03
title_short Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection
title_full Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection
title_fullStr Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection
title_full_unstemmed Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection
title_sort Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detection
author Yauri, Ricardo
author_facet Yauri, Ricardo
Castro, Antero
Espino, Rafael
author_role author
author2 Castro, Antero
Espino, Rafael
author2_role author
author
dc.contributor.author.fl_str_mv Yauri, Ricardo
Castro, Antero
Espino, Rafael
dc.subject.es_PE.fl_str_mv Computer vision
Segmentation
Leaf health
Precision agriculture
topic Computer vision
Segmentation
Leaf health
Precision agriculture
https://purl.org/pe-repo/ocde/ford#2.11.03
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.03
description Manual identification of diseases in crops is costly and subjective, driving the need for automated systems for accurate detection in the field. This requires the use of technologies based on the integration of IoT and deep learning models to improve the assessment capacity of crop health and leaf disease, with continuous monitoring. The literature review highlights technological solutions that include weed and disease detection using artificial intelligence and autonomous systems, as well as semantic segmentation algorithms to locate diseases in field images whose processes can be improved with systems based on microcontrollers and sensors. This research implements a leaf health monitoring system using IoT and AI technologies, with the development of an IoT device with a camera, the configuration of an MQTT broker in NODE-Red, and the implementation of a script in Python for leaf instance segmentation and image display. As a result, it is highlighted that image analysis, with the Python tool, allowed obtaining valuable information for precision agriculture, while the visualization or messaging interface allows health monitoring and management of crops. In conclusion, the System adequately performs image capture, processing, and transmission, being a contributes to precision agriculture solutions, considering that this can be improved with the integration of more complex deep learning algorithms to increase precision.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-11-14T15:26:09Z
dc.date.available.none.fl_str_mv 2025-11-14T15:26:09Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2415-1513
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14644
dc.identifier.journal.es_PE.fl_str_mv WSEAS Transactions on Electronics
dc.identifier.doi.none.fl_str_mv https://doi.org/10.37394/232017.2024.15.17
identifier_str_mv 2415-1513
WSEAS Transactions on Electronics
url https://hdl.handle.net/20.500.12867/14644
https://doi.org/10.37394/232017.2024.15.17
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv World Scientific and Engineering Academy and Society
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c9a9469b-435e-41aa-8a25-3e1e20e8c386/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0f1e5535-03d7-4c4b-859b-fef794408309/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/790e32f8-98ce-4e2c-8b6f-4d1aa8b28363/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/d07c2e9b-cd16-4f83-8aa6-37ee8c72ed3e/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3712d450-6eb2-47aa-ac9f-33085fe2e5b9/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/9f5f386f-c2f6-497d-bcfc-689e4cb64db1/download
bitstream.checksum.fl_str_mv 83f994543bedfa2d30f11efed31d6193
8a4605be74aa9ea9d79846c1fba20a33
ef6964030fa4c7bfc8d8115c91590dbd
1fa77eb0e49e66444c855247cfd51b13
df7e435fa69f56aac1aba45d53257bfa
ade7e80619dce879c2f5dbfea32cfa00
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852865381788549120
spelling Yauri, RicardoCastro, AnteroEspino, Rafael2025-11-14T15:26:09Z2025-11-14T15:26:09Z20242415-1513https://hdl.handle.net/20.500.12867/14644WSEAS Transactions on Electronicshttps://doi.org/10.37394/232017.2024.15.17Manual identification of diseases in crops is costly and subjective, driving the need for automated systems for accurate detection in the field. This requires the use of technologies based on the integration of IoT and deep learning models to improve the assessment capacity of crop health and leaf disease, with continuous monitoring. The literature review highlights technological solutions that include weed and disease detection using artificial intelligence and autonomous systems, as well as semantic segmentation algorithms to locate diseases in field images whose processes can be improved with systems based on microcontrollers and sensors. This research implements a leaf health monitoring system using IoT and AI technologies, with the development of an IoT device with a camera, the configuration of an MQTT broker in NODE-Red, and the implementation of a script in Python for leaf instance segmentation and image display. As a result, it is highlighted that image analysis, with the Python tool, allowed obtaining valuable information for precision agriculture, while the visualization or messaging interface allows health monitoring and management of crops. In conclusion, the System adequately performs image capture, processing, and transmission, being a contributes to precision agriculture solutions, considering that this can be improved with the integration of more complex deep learning algorithms to increase precision.Campus San Juan de Luriganchoapplication/pdfengWorld Scientific and Engineering Academy and Societyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPComputer visionSegmentationLeaf healthPrecision agriculturehttps://purl.org/pe-repo/ocde/ford#2.11.03Automatic leaf health monitoring with an IoT camera system based on computer vision and segmentation for disease detectioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALR.Yauri_A.Castro_R.Espino_Articulo_2024.pdfR.Yauri_A.Castro_R.Espino_Articulo_2024.pdfapplication/pdf2365784https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c9a9469b-435e-41aa-8a25-3e1e20e8c386/download83f994543bedfa2d30f11efed31d6193MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0f1e5535-03d7-4c4b-859b-fef794408309/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTYauri.R_Castro.A_Espino.R_Articulo_2024.pdf.txtYauri.R_Castro.A_Espino.R_Articulo_2024.pdf.txtExtracted texttext/plain32418https://repositorio.utp.edu.pe/backend/api/core/bitstreams/790e32f8-98ce-4e2c-8b6f-4d1aa8b28363/downloadef6964030fa4c7bfc8d8115c91590dbdMD53R.Yauri_A.Castro_R.Espino_Articulo_2024.pdf.txtR.Yauri_A.Castro_R.Espino_Articulo_2024.pdf.txtExtracted texttext/plain33122https://repositorio.utp.edu.pe/backend/api/core/bitstreams/d07c2e9b-cd16-4f83-8aa6-37ee8c72ed3e/download1fa77eb0e49e66444c855247cfd51b13MD57THUMBNAILYauri.R_Castro.A_Espino.R_Articulo_2024.pdf.jpgYauri.R_Castro.A_Espino.R_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg24951https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3712d450-6eb2-47aa-ac9f-33085fe2e5b9/downloaddf7e435fa69f56aac1aba45d53257bfaMD54R.Yauri_A.Castro_R.Espino_Articulo_2024.pdf.jpgR.Yauri_A.Castro_R.Espino_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg47973https://repositorio.utp.edu.pe/backend/api/core/bitstreams/9f5f386f-c2f6-497d-bcfc-689e4cb64db1/downloadade7e80619dce879c2f5dbfea32cfa00MD5820.500.12867/14644oai:repositorio.utp.edu.pe:20.500.12867/146442025-11-30 16:28:08.059https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.9061165
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).