1
artículo
Publicado 2024
Enlace
Enlace
Manual identification of diseases in crops is costly and subjective, driving the need for automated systems for accurate detection in the field. This requires the use of technologies based on the integration of IoT and deep learning models to improve the assessment capacity of crop health and leaf disease, with continuous monitoring. The literature review highlights technological solutions that include weed and disease detection using artificial intelligence and autonomous systems, as well as semantic segmentation algorithms to locate diseases in field images whose processes can be improved with systems based on microcontrollers and sensors. This research implements a leaf health monitoring system using IoT and AI technologies, with the development of an IoT device with a camera, the configuration of an MQTT broker in NODE-Red, and the implementation of a script in Python for leaf instan...
2
artículo
Publicado 2022
Enlace
Enlace
We describe the design and development of sensor nodes, based on Edge computing technologies, for the processing and classification of events detected in physiological signals such as the electrocardiographic signal (ECG is the electrical signal of the heart), temperature, heart rate, and human movement. The edge device uses a 32-bit Tensilica microcontroller-based module with the ability to transmit data wirelessly using Wi-Fi. In addition, algorithms for classification and detection of movement patterns were implemented to be implemented in devices with limited resources and not only in high-performance computers. The Internet of Things and its application in smart environments can help non-intrusive monitoring of daily activities by implementing support vector machine (SVM is a machine learning algorithm) for implementation in embedded systems with low hardware resources. This paper s...