Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system

Descripción del Articulo

We describe the design and development of sensor nodes, based on Edge computing technologies, for the processing and classification of events detected in physiological signals such as the electrocardiographic signal (ECG is the electrical signal of the heart), temperature, heart rate, and human move...

Descripción completa

Detalles Bibliográficos
Autores: Castro Nieto, Antero, Espino Campos, Rafael, Yauri, Ricardo, Gamarra, Segundo
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6008
Enlace del recurso:https://hdl.handle.net/20.500.12867/6008
http://doi.org/10.11591/ijeecs.v28.i1.pp98-105
Nivel de acceso:acceso abierto
Materia:Artificial intelligence
Electrocardiographic
Internet of things
Edge computing
https://purl.org/pe-repo/ocde/ford#2.02.03
Descripción
Sumario:We describe the design and development of sensor nodes, based on Edge computing technologies, for the processing and classification of events detected in physiological signals such as the electrocardiographic signal (ECG is the electrical signal of the heart), temperature, heart rate, and human movement. The edge device uses a 32-bit Tensilica microcontroller-based module with the ability to transmit data wirelessly using Wi-Fi. In addition, algorithms for classification and detection of movement patterns were implemented to be implemented in devices with limited resources and not only in high-performance computers. The Internet of Things and its application in smart environments can help non-intrusive monitoring of daily activities by implementing support vector machine (SVM is a machine learning algorithm) for implementation in embedded systems with low hardware resources. This paper shows experimental results obtained during the acquisition, transmission, and processing of physiological signals in a edge computing system and their visualization in a web application.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).