Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system
Descripción del Articulo
We describe the design and development of sensor nodes, based on Edge computing technologies, for the processing and classification of events detected in physiological signals such as the electrocardiographic signal (ECG is the electrical signal of the heart), temperature, heart rate, and human move...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Tecnológica del Perú |
Repositorio: | UTP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/6008 |
Enlace del recurso: | https://hdl.handle.net/20.500.12867/6008 http://doi.org/10.11591/ijeecs.v28.i1.pp98-105 |
Nivel de acceso: | acceso abierto |
Materia: | Artificial intelligence Electrocardiographic Internet of things Edge computing https://purl.org/pe-repo/ocde/ford#2.02.03 |
id |
UTPD_7ad715285e9561e46db38315fcc069c1 |
---|---|
oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/6008 |
network_acronym_str |
UTPD |
network_name_str |
UTP-Institucional |
repository_id_str |
4782 |
dc.title.es_PE.fl_str_mv |
Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system |
title |
Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system |
spellingShingle |
Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system Castro Nieto, Antero Artificial intelligence Electrocardiographic Internet of things Edge computing https://purl.org/pe-repo/ocde/ford#2.02.03 |
title_short |
Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system |
title_full |
Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system |
title_fullStr |
Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system |
title_full_unstemmed |
Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system |
title_sort |
Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system |
author |
Castro Nieto, Antero |
author_facet |
Castro Nieto, Antero Espino Campos, Rafael Yauri, Ricardo Gamarra, Segundo |
author_role |
author |
author2 |
Espino Campos, Rafael Yauri, Ricardo Gamarra, Segundo |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Castro Nieto, Antero Espino Campos, Rafael Yauri, Ricardo Gamarra, Segundo |
dc.subject.es_PE.fl_str_mv |
Artificial intelligence Electrocardiographic Internet of things Edge computing |
topic |
Artificial intelligence Electrocardiographic Internet of things Edge computing https://purl.org/pe-repo/ocde/ford#2.02.03 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.03 |
description |
We describe the design and development of sensor nodes, based on Edge computing technologies, for the processing and classification of events detected in physiological signals such as the electrocardiographic signal (ECG is the electrical signal of the heart), temperature, heart rate, and human movement. The edge device uses a 32-bit Tensilica microcontroller-based module with the ability to transmit data wirelessly using Wi-Fi. In addition, algorithms for classification and detection of movement patterns were implemented to be implemented in devices with limited resources and not only in high-performance computers. The Internet of Things and its application in smart environments can help non-intrusive monitoring of daily activities by implementing support vector machine (SVM is a machine learning algorithm) for implementation in embedded systems with low hardware resources. This paper shows experimental results obtained during the acquisition, transmission, and processing of physiological signals in a edge computing system and their visualization in a web application. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-10-05T16:38:36Z |
dc.date.available.none.fl_str_mv |
2022-10-05T16:38:36Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2502-4752 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/6008 |
dc.identifier.journal.es_PE.fl_str_mv |
Indonesian Journal of Electrical Engineering and Computer Science |
dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.11591/ijeecs.v28.i1.pp98-105 |
identifier_str_mv |
2502-4752 Indonesian Journal of Electrical Engineering and Computer Science |
url |
https://hdl.handle.net/20.500.12867/6008 http://doi.org/10.11591/ijeecs.v28.i1.pp98-105 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.none.fl_str_mv |
Indonesian Journal of Electrical Engineering and Computer Science;vol. 28, n° 1, pp. 98-105 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Institute of Advanced Engineering and Science |
dc.publisher.country.es_PE.fl_str_mv |
ID |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
instname_str |
Universidad Tecnológica del Perú |
instacron_str |
UTP |
institution |
UTP |
reponame_str |
UTP-Institucional |
collection |
UTP-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/1/A.Castro_R.Espino_IJEECS_spa_2022.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/3/A.Castro_R.Espino_IJEECS_spa_2022.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/4/A.Castro_R.Espino_IJEECS_spa_2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 76d275470c4dd820cfe30ee8857f75cc 30c289a6ab01629f27a4bd739f36375e 0d769664be680a1491ece3e51b948442 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
_version_ |
1817984863682166784 |
spelling |
Castro Nieto, AnteroEspino Campos, RafaelYauri, RicardoGamarra, Segundo2022-10-05T16:38:36Z2022-10-05T16:38:36Z20222502-4752https://hdl.handle.net/20.500.12867/6008Indonesian Journal of Electrical Engineering and Computer Sciencehttp://doi.org/10.11591/ijeecs.v28.i1.pp98-105We describe the design and development of sensor nodes, based on Edge computing technologies, for the processing and classification of events detected in physiological signals such as the electrocardiographic signal (ECG is the electrical signal of the heart), temperature, heart rate, and human movement. The edge device uses a 32-bit Tensilica microcontroller-based module with the ability to transmit data wirelessly using Wi-Fi. In addition, algorithms for classification and detection of movement patterns were implemented to be implemented in devices with limited resources and not only in high-performance computers. The Internet of Things and its application in smart environments can help non-intrusive monitoring of daily activities by implementing support vector machine (SVM is a machine learning algorithm) for implementation in embedded systems with low hardware resources. This paper shows experimental results obtained during the acquisition, transmission, and processing of physiological signals in a edge computing system and their visualization in a web application.Campus Lima Centroapplication/pdfspaInstitute of Advanced Engineering and ScienceIDIndonesian Journal of Electrical Engineering and Computer Science;vol. 28, n° 1, pp. 98-105info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPArtificial intelligenceElectrocardiographicInternet of thingsEdge computinghttps://purl.org/pe-repo/ocde/ford#2.02.03Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing systeminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALA.Castro_R.Espino_IJEECS_spa_2022.pdfA.Castro_R.Espino_IJEECS_spa_2022.pdfapplication/pdf581051http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/1/A.Castro_R.Espino_IJEECS_spa_2022.pdf76d275470c4dd820cfe30ee8857f75ccMD51TEXTA.Castro_R.Espino_IJEECS_spa_2022.pdf.txtA.Castro_R.Espino_IJEECS_spa_2022.pdf.txtExtracted texttext/plain24150http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/3/A.Castro_R.Espino_IJEECS_spa_2022.pdf.txt30c289a6ab01629f27a4bd739f36375eMD53THUMBNAILA.Castro_R.Espino_IJEECS_spa_2022.pdf.jpgA.Castro_R.Espino_IJEECS_spa_2022.pdf.jpgGenerated Thumbnailimage/jpeg21565http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/4/A.Castro_R.Espino_IJEECS_spa_2022.pdf.jpg0d769664be680a1491ece3e51b948442MD5420.500.12867/6008oai:repositorio.utp.edu.pe:20.500.12867/60082022-10-05 14:03:02.46Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.877722 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).