Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system

Descripción del Articulo

We describe the design and development of sensor nodes, based on Edge computing technologies, for the processing and classification of events detected in physiological signals such as the electrocardiographic signal (ECG is the electrical signal of the heart), temperature, heart rate, and human move...

Descripción completa

Detalles Bibliográficos
Autores: Castro Nieto, Antero, Espino Campos, Rafael, Yauri, Ricardo, Gamarra, Segundo
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6008
Enlace del recurso:https://hdl.handle.net/20.500.12867/6008
http://doi.org/10.11591/ijeecs.v28.i1.pp98-105
Nivel de acceso:acceso abierto
Materia:Artificial intelligence
Electrocardiographic
Internet of things
Edge computing
https://purl.org/pe-repo/ocde/ford#2.02.03
id UTPD_7ad715285e9561e46db38315fcc069c1
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/6008
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system
title Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system
spellingShingle Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system
Castro Nieto, Antero
Artificial intelligence
Electrocardiographic
Internet of things
Edge computing
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system
title_full Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system
title_fullStr Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system
title_full_unstemmed Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system
title_sort Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing system
author Castro Nieto, Antero
author_facet Castro Nieto, Antero
Espino Campos, Rafael
Yauri, Ricardo
Gamarra, Segundo
author_role author
author2 Espino Campos, Rafael
Yauri, Ricardo
Gamarra, Segundo
author2_role author
author
author
dc.contributor.author.fl_str_mv Castro Nieto, Antero
Espino Campos, Rafael
Yauri, Ricardo
Gamarra, Segundo
dc.subject.es_PE.fl_str_mv Artificial intelligence
Electrocardiographic
Internet of things
Edge computing
topic Artificial intelligence
Electrocardiographic
Internet of things
Edge computing
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description We describe the design and development of sensor nodes, based on Edge computing technologies, for the processing and classification of events detected in physiological signals such as the electrocardiographic signal (ECG is the electrical signal of the heart), temperature, heart rate, and human movement. The edge device uses a 32-bit Tensilica microcontroller-based module with the ability to transmit data wirelessly using Wi-Fi. In addition, algorithms for classification and detection of movement patterns were implemented to be implemented in devices with limited resources and not only in high-performance computers. The Internet of Things and its application in smart environments can help non-intrusive monitoring of daily activities by implementing support vector machine (SVM is a machine learning algorithm) for implementation in embedded systems with low hardware resources. This paper shows experimental results obtained during the acquisition, transmission, and processing of physiological signals in a edge computing system and their visualization in a web application.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-05T16:38:36Z
dc.date.available.none.fl_str_mv 2022-10-05T16:38:36Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2502-4752
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/6008
dc.identifier.journal.es_PE.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science
dc.identifier.doi.none.fl_str_mv http://doi.org/10.11591/ijeecs.v28.i1.pp98-105
identifier_str_mv 2502-4752
Indonesian Journal of Electrical Engineering and Computer Science
url https://hdl.handle.net/20.500.12867/6008
http://doi.org/10.11591/ijeecs.v28.i1.pp98-105
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartofseries.none.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science;vol. 28, n° 1, pp. 98-105
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Advanced Engineering and Science
dc.publisher.country.es_PE.fl_str_mv ID
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/1/A.Castro_R.Espino_IJEECS_spa_2022.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/3/A.Castro_R.Espino_IJEECS_spa_2022.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/4/A.Castro_R.Espino_IJEECS_spa_2022.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
76d275470c4dd820cfe30ee8857f75cc
30c289a6ab01629f27a4bd739f36375e
0d769664be680a1491ece3e51b948442
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984863682166784
spelling Castro Nieto, AnteroEspino Campos, RafaelYauri, RicardoGamarra, Segundo2022-10-05T16:38:36Z2022-10-05T16:38:36Z20222502-4752https://hdl.handle.net/20.500.12867/6008Indonesian Journal of Electrical Engineering and Computer Sciencehttp://doi.org/10.11591/ijeecs.v28.i1.pp98-105We describe the design and development of sensor nodes, based on Edge computing technologies, for the processing and classification of events detected in physiological signals such as the electrocardiographic signal (ECG is the electrical signal of the heart), temperature, heart rate, and human movement. The edge device uses a 32-bit Tensilica microcontroller-based module with the ability to transmit data wirelessly using Wi-Fi. In addition, algorithms for classification and detection of movement patterns were implemented to be implemented in devices with limited resources and not only in high-performance computers. The Internet of Things and its application in smart environments can help non-intrusive monitoring of daily activities by implementing support vector machine (SVM is a machine learning algorithm) for implementation in embedded systems with low hardware resources. This paper shows experimental results obtained during the acquisition, transmission, and processing of physiological signals in a edge computing system and their visualization in a web application.Campus Lima Centroapplication/pdfspaInstitute of Advanced Engineering and ScienceIDIndonesian Journal of Electrical Engineering and Computer Science;vol. 28, n° 1, pp. 98-105info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPArtificial intelligenceElectrocardiographicInternet of thingsEdge computinghttps://purl.org/pe-repo/ocde/ford#2.02.03Implementation of a sensor node for monitoring and classification of physiological signals in an edge computing systeminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALA.Castro_R.Espino_IJEECS_spa_2022.pdfA.Castro_R.Espino_IJEECS_spa_2022.pdfapplication/pdf581051http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/1/A.Castro_R.Espino_IJEECS_spa_2022.pdf76d275470c4dd820cfe30ee8857f75ccMD51TEXTA.Castro_R.Espino_IJEECS_spa_2022.pdf.txtA.Castro_R.Espino_IJEECS_spa_2022.pdf.txtExtracted texttext/plain24150http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/3/A.Castro_R.Espino_IJEECS_spa_2022.pdf.txt30c289a6ab01629f27a4bd739f36375eMD53THUMBNAILA.Castro_R.Espino_IJEECS_spa_2022.pdf.jpgA.Castro_R.Espino_IJEECS_spa_2022.pdf.jpgGenerated Thumbnailimage/jpeg21565http://repositorio.utp.edu.pe/bitstream/20.500.12867/6008/4/A.Castro_R.Espino_IJEECS_spa_2022.pdf.jpg0d769664be680a1491ece3e51b948442MD5420.500.12867/6008oai:repositorio.utp.edu.pe:20.500.12867/60082022-10-05 14:03:02.46Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.877722
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).