Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú
Descripción del Articulo
A total of 188,859 meteorological-PM10 data validated before (2019) and during the COVID-19 pandemic (2020) were used. In order to predict PM10 in two districts of South Lima in Peru, hourly, daily, monthly and seasonal variations of the data were analyzed. Principal Component Analysis (PCA) and lin...
| Autores: | , , , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/6171 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/6171 https://doi.org/10.1038/s41598-022-20904-2 |
| Nivel de acceso: | acceso abierto |
| Materia: | Air pollution Predictive modelling https://purl.org/pe-repo/ocde/ford#1.01.03 https://purl.org/pe-repo/ocde/ford#1.05.09 |
| id |
UTPD_91298ad49014f22a3b87c3019aad8c42 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/6171 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú |
| title |
Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú |
| spellingShingle |
Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú Valdiviezo Gonzales, Lorgio Air pollution Predictive modelling https://purl.org/pe-repo/ocde/ford#1.01.03 https://purl.org/pe-repo/ocde/ford#1.05.09 |
| title_short |
Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú |
| title_full |
Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú |
| title_fullStr |
Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú |
| title_full_unstemmed |
Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú |
| title_sort |
Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú |
| author |
Valdiviezo Gonzales, Lorgio |
| author_facet |
Valdiviezo Gonzales, Lorgio Cabello-Torres, Rita Jaqueline Ponce Estela, Manuel Angel Sánchez-Ccoyllo, Odón Romero-Cabello, Edison Alessandro García Ávila, Fausto Fernando Castañeda-Olivera, Carlos Alberto Quispe Eulogio, Carlos Enrique Huamán de la Cruz, Alex Rubén López-Gonzales, Javier Linkolk |
| author_role |
author |
| author2 |
Cabello-Torres, Rita Jaqueline Ponce Estela, Manuel Angel Sánchez-Ccoyllo, Odón Romero-Cabello, Edison Alessandro García Ávila, Fausto Fernando Castañeda-Olivera, Carlos Alberto Quispe Eulogio, Carlos Enrique Huamán de la Cruz, Alex Rubén López-Gonzales, Javier Linkolk |
| author2_role |
author author author author author author author author author |
| dc.contributor.author.fl_str_mv |
Valdiviezo Gonzales, Lorgio Cabello-Torres, Rita Jaqueline Ponce Estela, Manuel Angel Sánchez-Ccoyllo, Odón Romero-Cabello, Edison Alessandro García Ávila, Fausto Fernando Castañeda-Olivera, Carlos Alberto Quispe Eulogio, Carlos Enrique Huamán de la Cruz, Alex Rubén López-Gonzales, Javier Linkolk |
| dc.subject.es_PE.fl_str_mv |
Air pollution Predictive modelling |
| topic |
Air pollution Predictive modelling https://purl.org/pe-repo/ocde/ford#1.01.03 https://purl.org/pe-repo/ocde/ford#1.05.09 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.03 https://purl.org/pe-repo/ocde/ford#1.05.09 |
| description |
A total of 188,859 meteorological-PM10 data validated before (2019) and during the COVID-19 pandemic (2020) were used. In order to predict PM10 in two districts of South Lima in Peru, hourly, daily, monthly and seasonal variations of the data were analyzed. Principal Component Analysis (PCA) and linear/nonlinear modeling were applied. The results showed the highest annual average PM10 for San Juan de Mirafores (SJM) (PM10-SJM: 78.7 µg/m3) and the lowest in Santiago de Surco (SS) (PM10 -SS: 40.2 µg/m3). The PCA showed the infuence of relative humidity (RH)-atmospheric pressure (AP)temperature (T)/dew point (DP)-wind speed (WS)-wind direction (WD) combinations. Cool months with higher humidity and atmospheric instability decreased PM10 values in SJM and warm months increased it, favored by thermal inversion (TI). Dust resuspension, vehicular transport and stationary sources contributed more PM10 at peak times in the morning and evening. The Multiple linear regression (MLR) showed the best correlation (r = 0.6166), followed by the three-dimensional model LogAP-LogWD-LogPM10 (r = 0.5753); the RMSE-MLR (12.92) exceeded that found in the 3D models (RMSE < 0.3) and the NSE-MLR criterion (0.3804) was acceptable. PM10 prediction was modeled using the algorithmic approach in any scenario to optimize urban management decisions in times of pandemic. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-11-07T17:53:28Z |
| dc.date.available.none.fl_str_mv |
2022-11-07T17:53:28Z |
| dc.date.issued.fl_str_mv |
2022 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2045-2322 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/6171 |
| dc.identifier.journal.es_PE.fl_str_mv |
Scientific Reports |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1038/s41598-022-20904-2 |
| identifier_str_mv |
2045-2322 Scientific Reports |
| url |
https://hdl.handle.net/20.500.12867/6171 https://doi.org/10.1038/s41598-022-20904-2 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofseries.none.fl_str_mv |
Scientific Reports;vol. 12 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Nature Publishing Group |
| dc.publisher.country.es_PE.fl_str_mv |
GB |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/1/L.Valdiviezo_SR_Articulo_eng_2022.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/3/L.Valdiviezo_SR_Articulo_eng_2022.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/4/L.Valdiviezo_SR_Articulo_eng_2022.pdf.jpg |
| bitstream.checksum.fl_str_mv |
42861a4cc7223d749b7883b69242eacb 8a4605be74aa9ea9d79846c1fba20a33 93e04030303ba55c85397eaad67945f2 1da02c4cfd34b5ddab5dc8daac61fc6a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1817984870585991168 |
| spelling |
Valdiviezo Gonzales, LorgioCabello-Torres, Rita JaquelinePonce Estela, Manuel AngelSánchez-Ccoyllo, OdónRomero-Cabello, Edison AlessandroGarcía Ávila, Fausto FernandoCastañeda-Olivera, Carlos AlbertoQuispe Eulogio, Carlos EnriqueHuamán de la Cruz, Alex RubénLópez-Gonzales, Javier Linkolk2022-11-07T17:53:28Z2022-11-07T17:53:28Z20222045-2322https://hdl.handle.net/20.500.12867/6171Scientific Reportshttps://doi.org/10.1038/s41598-022-20904-2A total of 188,859 meteorological-PM10 data validated before (2019) and during the COVID-19 pandemic (2020) were used. In order to predict PM10 in two districts of South Lima in Peru, hourly, daily, monthly and seasonal variations of the data were analyzed. Principal Component Analysis (PCA) and linear/nonlinear modeling were applied. The results showed the highest annual average PM10 for San Juan de Mirafores (SJM) (PM10-SJM: 78.7 µg/m3) and the lowest in Santiago de Surco (SS) (PM10 -SS: 40.2 µg/m3). The PCA showed the infuence of relative humidity (RH)-atmospheric pressure (AP)temperature (T)/dew point (DP)-wind speed (WS)-wind direction (WD) combinations. Cool months with higher humidity and atmospheric instability decreased PM10 values in SJM and warm months increased it, favored by thermal inversion (TI). Dust resuspension, vehicular transport and stationary sources contributed more PM10 at peak times in the morning and evening. The Multiple linear regression (MLR) showed the best correlation (r = 0.6166), followed by the three-dimensional model LogAP-LogWD-LogPM10 (r = 0.5753); the RMSE-MLR (12.92) exceeded that found in the 3D models (RMSE < 0.3) and the NSE-MLR criterion (0.3804) was acceptable. PM10 prediction was modeled using the algorithmic approach in any scenario to optimize urban management decisions in times of pandemic.Campus San Juan de Luriganchoapplication/pdfengNature Publishing GroupGBScientific Reports;vol. 12info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPAir pollutionPredictive modellinghttps://purl.org/pe-repo/ocde/ford#1.01.03https://purl.org/pe-repo/ocde/ford#1.05.09Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perúinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALL.Valdiviezo_SR_Articulo_eng_2022.pdfL.Valdiviezo_SR_Articulo_eng_2022.pdfapplication/pdf8065345http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/1/L.Valdiviezo_SR_Articulo_eng_2022.pdf42861a4cc7223d749b7883b69242eacbMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTL.Valdiviezo_SR_Articulo_eng_2022.pdf.txtL.Valdiviezo_SR_Articulo_eng_2022.pdf.txtExtracted texttext/plain67604http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/3/L.Valdiviezo_SR_Articulo_eng_2022.pdf.txt93e04030303ba55c85397eaad67945f2MD53THUMBNAILL.Valdiviezo_SR_Articulo_eng_2022.pdf.jpgL.Valdiviezo_SR_Articulo_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg22375http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/4/L.Valdiviezo_SR_Articulo_eng_2022.pdf.jpg1da02c4cfd34b5ddab5dc8daac61fc6aMD5420.500.12867/6171oai:repositorio.utp.edu.pe:20.500.12867/61712022-11-07 14:51:44.761Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).