Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú

Descripción del Articulo

A total of 188,859 meteorological-PM10 data validated before (2019) and during the COVID-19 pandemic (2020) were used. In order to predict PM10 in two districts of South Lima in Peru, hourly, daily, monthly and seasonal variations of the data were analyzed. Principal Component Analysis (PCA) and lin...

Descripción completa

Detalles Bibliográficos
Autores: Valdiviezo Gonzales, Lorgio, Cabello-Torres, Rita Jaqueline, Ponce Estela, Manuel Angel, Sánchez-Ccoyllo, Odón, Romero-Cabello, Edison Alessandro, García Ávila, Fausto Fernando, Castañeda-Olivera, Carlos Alberto, Quispe Eulogio, Carlos Enrique, Huamán de la Cruz, Alex Rubén, López-Gonzales, Javier Linkolk
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6171
Enlace del recurso:https://hdl.handle.net/20.500.12867/6171
https://doi.org/10.1038/s41598-022-20904-2
Nivel de acceso:acceso abierto
Materia:Air pollution
Predictive modelling
https://purl.org/pe-repo/ocde/ford#1.01.03
https://purl.org/pe-repo/ocde/ford#1.05.09
id UTPD_91298ad49014f22a3b87c3019aad8c42
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/6171
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú
title Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú
spellingShingle Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú
Valdiviezo Gonzales, Lorgio
Air pollution
Predictive modelling
https://purl.org/pe-repo/ocde/ford#1.01.03
https://purl.org/pe-repo/ocde/ford#1.05.09
title_short Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú
title_full Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú
title_fullStr Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú
title_full_unstemmed Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú
title_sort Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú
author Valdiviezo Gonzales, Lorgio
author_facet Valdiviezo Gonzales, Lorgio
Cabello-Torres, Rita Jaqueline
Ponce Estela, Manuel Angel
Sánchez-Ccoyllo, Odón
Romero-Cabello, Edison Alessandro
García Ávila, Fausto Fernando
Castañeda-Olivera, Carlos Alberto
Quispe Eulogio, Carlos Enrique
Huamán de la Cruz, Alex Rubén
López-Gonzales, Javier Linkolk
author_role author
author2 Cabello-Torres, Rita Jaqueline
Ponce Estela, Manuel Angel
Sánchez-Ccoyllo, Odón
Romero-Cabello, Edison Alessandro
García Ávila, Fausto Fernando
Castañeda-Olivera, Carlos Alberto
Quispe Eulogio, Carlos Enrique
Huamán de la Cruz, Alex Rubén
López-Gonzales, Javier Linkolk
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Valdiviezo Gonzales, Lorgio
Cabello-Torres, Rita Jaqueline
Ponce Estela, Manuel Angel
Sánchez-Ccoyllo, Odón
Romero-Cabello, Edison Alessandro
García Ávila, Fausto Fernando
Castañeda-Olivera, Carlos Alberto
Quispe Eulogio, Carlos Enrique
Huamán de la Cruz, Alex Rubén
López-Gonzales, Javier Linkolk
dc.subject.es_PE.fl_str_mv Air pollution
Predictive modelling
topic Air pollution
Predictive modelling
https://purl.org/pe-repo/ocde/ford#1.01.03
https://purl.org/pe-repo/ocde/ford#1.05.09
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.03
https://purl.org/pe-repo/ocde/ford#1.05.09
description A total of 188,859 meteorological-PM10 data validated before (2019) and during the COVID-19 pandemic (2020) were used. In order to predict PM10 in two districts of South Lima in Peru, hourly, daily, monthly and seasonal variations of the data were analyzed. Principal Component Analysis (PCA) and linear/nonlinear modeling were applied. The results showed the highest annual average PM10 for San Juan de Mirafores (SJM) (PM10-SJM: 78.7 µg/m3) and the lowest in Santiago de Surco (SS) (PM10 -SS: 40.2 µg/m3). The PCA showed the infuence of relative humidity (RH)-atmospheric pressure (AP)temperature (T)/dew point (DP)-wind speed (WS)-wind direction (WD) combinations. Cool months with higher humidity and atmospheric instability decreased PM10 values in SJM and warm months increased it, favored by thermal inversion (TI). Dust resuspension, vehicular transport and stationary sources contributed more PM10 at peak times in the morning and evening. The Multiple linear regression (MLR) showed the best correlation (r = 0.6166), followed by the three-dimensional model LogAP-LogWD-LogPM10 (r = 0.5753); the RMSE-MLR (12.92) exceeded that found in the 3D models (RMSE < 0.3) and the NSE-MLR criterion (0.3804) was acceptable. PM10 prediction was modeled using the algorithmic approach in any scenario to optimize urban management decisions in times of pandemic.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-11-07T17:53:28Z
dc.date.available.none.fl_str_mv 2022-11-07T17:53:28Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2045-2322
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/6171
dc.identifier.journal.es_PE.fl_str_mv Scientific Reports
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1038/s41598-022-20904-2
identifier_str_mv 2045-2322
Scientific Reports
url https://hdl.handle.net/20.500.12867/6171
https://doi.org/10.1038/s41598-022-20904-2
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Scientific Reports;vol. 12
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Nature Publishing Group
dc.publisher.country.es_PE.fl_str_mv GB
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/1/L.Valdiviezo_SR_Articulo_eng_2022.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/3/L.Valdiviezo_SR_Articulo_eng_2022.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/4/L.Valdiviezo_SR_Articulo_eng_2022.pdf.jpg
bitstream.checksum.fl_str_mv 42861a4cc7223d749b7883b69242eacb
8a4605be74aa9ea9d79846c1fba20a33
93e04030303ba55c85397eaad67945f2
1da02c4cfd34b5ddab5dc8daac61fc6a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984870585991168
spelling Valdiviezo Gonzales, LorgioCabello-Torres, Rita JaquelinePonce Estela, Manuel AngelSánchez-Ccoyllo, OdónRomero-Cabello, Edison AlessandroGarcía Ávila, Fausto FernandoCastañeda-Olivera, Carlos AlbertoQuispe Eulogio, Carlos EnriqueHuamán de la Cruz, Alex RubénLópez-Gonzales, Javier Linkolk2022-11-07T17:53:28Z2022-11-07T17:53:28Z20222045-2322https://hdl.handle.net/20.500.12867/6171Scientific Reportshttps://doi.org/10.1038/s41598-022-20904-2A total of 188,859 meteorological-PM10 data validated before (2019) and during the COVID-19 pandemic (2020) were used. In order to predict PM10 in two districts of South Lima in Peru, hourly, daily, monthly and seasonal variations of the data were analyzed. Principal Component Analysis (PCA) and linear/nonlinear modeling were applied. The results showed the highest annual average PM10 for San Juan de Mirafores (SJM) (PM10-SJM: 78.7 µg/m3) and the lowest in Santiago de Surco (SS) (PM10 -SS: 40.2 µg/m3). The PCA showed the infuence of relative humidity (RH)-atmospheric pressure (AP)temperature (T)/dew point (DP)-wind speed (WS)-wind direction (WD) combinations. Cool months with higher humidity and atmospheric instability decreased PM10 values in SJM and warm months increased it, favored by thermal inversion (TI). Dust resuspension, vehicular transport and stationary sources contributed more PM10 at peak times in the morning and evening. The Multiple linear regression (MLR) showed the best correlation (r = 0.6166), followed by the three-dimensional model LogAP-LogWD-LogPM10 (r = 0.5753); the RMSE-MLR (12.92) exceeded that found in the 3D models (RMSE < 0.3) and the NSE-MLR criterion (0.3804) was acceptable. PM10 prediction was modeled using the algorithmic approach in any scenario to optimize urban management decisions in times of pandemic.Campus San Juan de Luriganchoapplication/pdfengNature Publishing GroupGBScientific Reports;vol. 12info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPAir pollutionPredictive modellinghttps://purl.org/pe-repo/ocde/ford#1.01.03https://purl.org/pe-repo/ocde/ford#1.05.09Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perúinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALL.Valdiviezo_SR_Articulo_eng_2022.pdfL.Valdiviezo_SR_Articulo_eng_2022.pdfapplication/pdf8065345http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/1/L.Valdiviezo_SR_Articulo_eng_2022.pdf42861a4cc7223d749b7883b69242eacbMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTL.Valdiviezo_SR_Articulo_eng_2022.pdf.txtL.Valdiviezo_SR_Articulo_eng_2022.pdf.txtExtracted texttext/plain67604http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/3/L.Valdiviezo_SR_Articulo_eng_2022.pdf.txt93e04030303ba55c85397eaad67945f2MD53THUMBNAILL.Valdiviezo_SR_Articulo_eng_2022.pdf.jpgL.Valdiviezo_SR_Articulo_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg22375http://repositorio.utp.edu.pe/bitstream/20.500.12867/6171/4/L.Valdiviezo_SR_Articulo_eng_2022.pdf.jpg1da02c4cfd34b5ddab5dc8daac61fc6aMD5420.500.12867/6171oai:repositorio.utp.edu.pe:20.500.12867/61712022-11-07 14:51:44.761Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).