Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú

Descripción del Articulo

A total of 188,859 meteorological-PM10 data validated before (2019) and during the COVID-19 pandemic (2020) were used. In order to predict PM10 in two districts of South Lima in Peru, hourly, daily, monthly and seasonal variations of the data were analyzed. Principal Component Analysis (PCA) and lin...

Descripción completa

Detalles Bibliográficos
Autores: Valdiviezo Gonzales, Lorgio, Cabello-Torres, Rita Jaqueline, Ponce Estela, Manuel Angel, Sánchez-Ccoyllo, Odón, Romero-Cabello, Edison Alessandro, García Ávila, Fausto Fernando, Castañeda-Olivera, Carlos Alberto, Quispe Eulogio, Carlos Enrique, Huamán de la Cruz, Alex Rubén, López-Gonzales, Javier Linkolk
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6171
Enlace del recurso:https://hdl.handle.net/20.500.12867/6171
https://doi.org/10.1038/s41598-022-20904-2
Nivel de acceso:acceso abierto
Materia:Air pollution
Predictive modelling
https://purl.org/pe-repo/ocde/ford#1.01.03
https://purl.org/pe-repo/ocde/ford#1.05.09
Descripción
Sumario:A total of 188,859 meteorological-PM10 data validated before (2019) and during the COVID-19 pandemic (2020) were used. In order to predict PM10 in two districts of South Lima in Peru, hourly, daily, monthly and seasonal variations of the data were analyzed. Principal Component Analysis (PCA) and linear/nonlinear modeling were applied. The results showed the highest annual average PM10 for San Juan de Mirafores (SJM) (PM10-SJM: 78.7 µg/m3) and the lowest in Santiago de Surco (SS) (PM10 -SS: 40.2 µg/m3). The PCA showed the infuence of relative humidity (RH)-atmospheric pressure (AP)temperature (T)/dew point (DP)-wind speed (WS)-wind direction (WD) combinations. Cool months with higher humidity and atmospheric instability decreased PM10 values in SJM and warm months increased it, favored by thermal inversion (TI). Dust resuspension, vehicular transport and stationary sources contributed more PM10 at peak times in the morning and evening. The Multiple linear regression (MLR) showed the best correlation (r = 0.6166), followed by the three-dimensional model LogAP-LogWD-LogPM10 (r = 0.5753); the RMSE-MLR (12.92) exceeded that found in the 3D models (RMSE < 0.3) and the NSE-MLR criterion (0.3804) was acceptable. PM10 prediction was modeled using the algorithmic approach in any scenario to optimize urban management decisions in times of pandemic.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).