Systematic review of artificial intelligence with near-infrared in blueberries

Descripción del Articulo

The fruit quality has a direct impact on how the fruit looks and how tasty the fruit is. The correct use of tools to determine fruit quality is essential to offer the best product for the final consumer. This study has used the preferred reporting items for systematic reviews and meta-analyses (PRIS...

Descripción completa

Detalles Bibliográficos
Autores: Cayhualla Amaro, Liset, Rau Reyes, Sebastian, Acuña Meléndez, María, Ovalle, Christian
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14092
Enlace del recurso:https://hdl.handle.net/20.500.12867/14092
Nivel de acceso:acceso abierto
Materia:Artificial intelligence
Blueberries
Machine learning
Chemometry
https://purl.org/pe-repo/ocde/ford#2.02.04
id UTPD_75ac0c1b513f568832e95b1eb20b53a5
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14092
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Systematic review of artificial intelligence with near-infrared in blueberries
title Systematic review of artificial intelligence with near-infrared in blueberries
spellingShingle Systematic review of artificial intelligence with near-infrared in blueberries
Cayhualla Amaro, Liset
Artificial intelligence
Blueberries
Machine learning
Chemometry
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Systematic review of artificial intelligence with near-infrared in blueberries
title_full Systematic review of artificial intelligence with near-infrared in blueberries
title_fullStr Systematic review of artificial intelligence with near-infrared in blueberries
title_full_unstemmed Systematic review of artificial intelligence with near-infrared in blueberries
title_sort Systematic review of artificial intelligence with near-infrared in blueberries
author Cayhualla Amaro, Liset
author_facet Cayhualla Amaro, Liset
Rau Reyes, Sebastian
Acuña Meléndez, María
Ovalle, Christian
author_role author
author2 Rau Reyes, Sebastian
Acuña Meléndez, María
Ovalle, Christian
author2_role author
author
author
dc.contributor.author.fl_str_mv Cayhualla Amaro, Liset
Rau Reyes, Sebastian
Acuña Meléndez, María
Ovalle, Christian
dc.subject.es_PE.fl_str_mv Artificial intelligence
Blueberries
Machine learning
Chemometry
topic Artificial intelligence
Blueberries
Machine learning
Chemometry
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description The fruit quality has a direct impact on how the fruit looks and how tasty the fruit is. The correct use of tools to determine fruit quality is essential to offer the best product for the final consumer. This study has used the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology. The study objective was elaborate a systematic literature review (SLR) about research of the application of techniques based on artificial intelligence to analyze indicators obtained by near infrared spectroscopy (NIRS) and chemometrics to determine the quality of fruits, including blueberries. The most frequently addressed indicator is the soluble solids concentration (SSC) which was used in several studies with techniques such as support vector machines (SVM) and convolutional neural networks (CNN). According to the results obtained, it is possible to use these techniques to predict blueberry quality indicators. There was an acceptable performance and high accuracy of these models. However, future research could cover other techniques and help to provide better quality control of products in food industries.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-10-28T20:31:29Z
dc.date.available.none.fl_str_mv 2025-10-28T20:31:29Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2252-8938
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14092
dc.identifier.journal.es_PE.fl_str_mv IAES International Journal of Artificial Intelligence
dc.identifier.doi.none.fl_str_mv doi.org/10.11591/ijai.v13.i4.pp3761-3771
identifier_str_mv 2252-8938
IAES International Journal of Artificial Intelligence
doi.org/10.11591/ijai.v13.i4.pp3761-3771
url https://hdl.handle.net/20.500.12867/14092
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Advanced Engineering and Science
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a5733293-c484-4af1-822b-67d492806d44/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/da900f3b-7a8d-474d-8694-8a7681d83004/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/266474e8-7440-46e2-9e69-5269fdd52e8c/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3e5e48eb-8496-4c4a-95b5-41e2c02aacdd/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c901613c-2598-4279-810d-8f338a8f79b9/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6ca84732-4387-4064-ba37-e9cbe8607bc2/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
08d7b8c9ef6e7fa0f56ed14ea2ec1900
259aae281b7145c3c9e9bb3a53813e2c
e0896a6c0e0b603ec2c51ff62966933a
013dad364f16e644bccac2df743cecd5
6eb9893bff64bbda8b688c7345b7e779
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852865446748880896
spelling Cayhualla Amaro, LisetRau Reyes, SebastianAcuña Meléndez, MaríaOvalle, Christian2025-10-28T20:31:29Z2025-10-28T20:31:29Z20242252-8938https://hdl.handle.net/20.500.12867/14092IAES International Journal of Artificial Intelligencedoi.org/10.11591/ijai.v13.i4.pp3761-3771The fruit quality has a direct impact on how the fruit looks and how tasty the fruit is. The correct use of tools to determine fruit quality is essential to offer the best product for the final consumer. This study has used the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology. The study objective was elaborate a systematic literature review (SLR) about research of the application of techniques based on artificial intelligence to analyze indicators obtained by near infrared spectroscopy (NIRS) and chemometrics to determine the quality of fruits, including blueberries. The most frequently addressed indicator is the soluble solids concentration (SSC) which was used in several studies with techniques such as support vector machines (SVM) and convolutional neural networks (CNN). According to the results obtained, it is possible to use these techniques to predict blueberry quality indicators. There was an acceptable performance and high accuracy of these models. However, future research could cover other techniques and help to provide better quality control of products in food industries.Campus Lima Centroapplication/pdfengInstitute of Advanced Engineering and Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPArtificial intelligenceBlueberriesMachine learningChemometryhttps://purl.org/pe-repo/ocde/ford#2.02.04Systematic review of artificial intelligence with near-infrared in blueberriesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a5733293-c484-4af1-822b-67d492806d44/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTCayhualla.L_Rau.S_Acuña.M_Ovalle.C_Articulo_2024.pdf.txtCayhualla.L_Rau.S_Acuña.M_Ovalle.C_Articulo_2024.pdf.txtExtracted texttext/plain50388https://repositorio.utp.edu.pe/backend/api/core/bitstreams/da900f3b-7a8d-474d-8694-8a7681d83004/download08d7b8c9ef6e7fa0f56ed14ea2ec1900MD53L.Cayhualla_S.Rau_M.Acuña_C.Ovalle_Articulo_2024.pdf.txtL.Cayhualla_S.Rau_M.Acuña_C.Ovalle_Articulo_2024.pdf.txtExtracted texttext/plain52014https://repositorio.utp.edu.pe/backend/api/core/bitstreams/266474e8-7440-46e2-9e69-5269fdd52e8c/download259aae281b7145c3c9e9bb3a53813e2cMD58THUMBNAILCayhualla.L_Rau.S_Acuña.M_Ovalle.C_Articulo_2024.pdf.jpgCayhualla.L_Rau.S_Acuña.M_Ovalle.C_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg21027https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3e5e48eb-8496-4c4a-95b5-41e2c02aacdd/downloade0896a6c0e0b603ec2c51ff62966933aMD54L.Cayhualla_S.Rau_M.Acuña_C.Ovalle_Articulo_2024.pdf.jpgL.Cayhualla_S.Rau_M.Acuña_C.Ovalle_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg39049https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c901613c-2598-4279-810d-8f338a8f79b9/download013dad364f16e644bccac2df743cecd5MD59ORIGINALL.Cayhualla_S.Rau_M.Acuña_C.Ovalle_Articulo_2024.pdfL.Cayhualla_S.Rau_M.Acuña_C.Ovalle_Articulo_2024.pdfapplication/pdf491791https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6ca84732-4387-4064-ba37-e9cbe8607bc2/download6eb9893bff64bbda8b688c7345b7e779MD5520.500.12867/14092oai:repositorio.utp.edu.pe:20.500.12867/140922025-11-30 16:40:27.511https://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.912748
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).