Systematic review of artificial intelligence with near-infrared in blueberries
Descripción del Articulo
The fruit quality has a direct impact on how the fruit looks and how tasty the fruit is. The correct use of tools to determine fruit quality is essential to offer the best product for the final consumer. This study has used the preferred reporting items for systematic reviews and meta-analyses (PRIS...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14092 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14092 |
| Nivel de acceso: | acceso abierto |
| Materia: | Artificial intelligence Blueberries Machine learning Chemometry https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
UTPD_75ac0c1b513f568832e95b1eb20b53a5 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14092 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Systematic review of artificial intelligence with near-infrared in blueberries |
| title |
Systematic review of artificial intelligence with near-infrared in blueberries |
| spellingShingle |
Systematic review of artificial intelligence with near-infrared in blueberries Cayhualla Amaro, Liset Artificial intelligence Blueberries Machine learning Chemometry https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Systematic review of artificial intelligence with near-infrared in blueberries |
| title_full |
Systematic review of artificial intelligence with near-infrared in blueberries |
| title_fullStr |
Systematic review of artificial intelligence with near-infrared in blueberries |
| title_full_unstemmed |
Systematic review of artificial intelligence with near-infrared in blueberries |
| title_sort |
Systematic review of artificial intelligence with near-infrared in blueberries |
| author |
Cayhualla Amaro, Liset |
| author_facet |
Cayhualla Amaro, Liset Rau Reyes, Sebastian Acuña Meléndez, María Ovalle, Christian |
| author_role |
author |
| author2 |
Rau Reyes, Sebastian Acuña Meléndez, María Ovalle, Christian |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Cayhualla Amaro, Liset Rau Reyes, Sebastian Acuña Meléndez, María Ovalle, Christian |
| dc.subject.es_PE.fl_str_mv |
Artificial intelligence Blueberries Machine learning Chemometry |
| topic |
Artificial intelligence Blueberries Machine learning Chemometry https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
The fruit quality has a direct impact on how the fruit looks and how tasty the fruit is. The correct use of tools to determine fruit quality is essential to offer the best product for the final consumer. This study has used the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology. The study objective was elaborate a systematic literature review (SLR) about research of the application of techniques based on artificial intelligence to analyze indicators obtained by near infrared spectroscopy (NIRS) and chemometrics to determine the quality of fruits, including blueberries. The most frequently addressed indicator is the soluble solids concentration (SSC) which was used in several studies with techniques such as support vector machines (SVM) and convolutional neural networks (CNN). According to the results obtained, it is possible to use these techniques to predict blueberry quality indicators. There was an acceptable performance and high accuracy of these models. However, future research could cover other techniques and help to provide better quality control of products in food industries. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-10-28T20:31:29Z |
| dc.date.available.none.fl_str_mv |
2025-10-28T20:31:29Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2252-8938 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14092 |
| dc.identifier.journal.es_PE.fl_str_mv |
IAES International Journal of Artificial Intelligence |
| dc.identifier.doi.none.fl_str_mv |
doi.org/10.11591/ijai.v13.i4.pp3761-3771 |
| identifier_str_mv |
2252-8938 IAES International Journal of Artificial Intelligence doi.org/10.11591/ijai.v13.i4.pp3761-3771 |
| url |
https://hdl.handle.net/20.500.12867/14092 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Institute of Advanced Engineering and Science |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a5733293-c484-4af1-822b-67d492806d44/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/da900f3b-7a8d-474d-8694-8a7681d83004/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/266474e8-7440-46e2-9e69-5269fdd52e8c/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3e5e48eb-8496-4c4a-95b5-41e2c02aacdd/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c901613c-2598-4279-810d-8f338a8f79b9/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6ca84732-4387-4064-ba37-e9cbe8607bc2/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 08d7b8c9ef6e7fa0f56ed14ea2ec1900 259aae281b7145c3c9e9bb3a53813e2c e0896a6c0e0b603ec2c51ff62966933a 013dad364f16e644bccac2df743cecd5 6eb9893bff64bbda8b688c7345b7e779 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852865446748880896 |
| spelling |
Cayhualla Amaro, LisetRau Reyes, SebastianAcuña Meléndez, MaríaOvalle, Christian2025-10-28T20:31:29Z2025-10-28T20:31:29Z20242252-8938https://hdl.handle.net/20.500.12867/14092IAES International Journal of Artificial Intelligencedoi.org/10.11591/ijai.v13.i4.pp3761-3771The fruit quality has a direct impact on how the fruit looks and how tasty the fruit is. The correct use of tools to determine fruit quality is essential to offer the best product for the final consumer. This study has used the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology. The study objective was elaborate a systematic literature review (SLR) about research of the application of techniques based on artificial intelligence to analyze indicators obtained by near infrared spectroscopy (NIRS) and chemometrics to determine the quality of fruits, including blueberries. The most frequently addressed indicator is the soluble solids concentration (SSC) which was used in several studies with techniques such as support vector machines (SVM) and convolutional neural networks (CNN). According to the results obtained, it is possible to use these techniques to predict blueberry quality indicators. There was an acceptable performance and high accuracy of these models. However, future research could cover other techniques and help to provide better quality control of products in food industries.Campus Lima Centroapplication/pdfengInstitute of Advanced Engineering and Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPArtificial intelligenceBlueberriesMachine learningChemometryhttps://purl.org/pe-repo/ocde/ford#2.02.04Systematic review of artificial intelligence with near-infrared in blueberriesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a5733293-c484-4af1-822b-67d492806d44/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTCayhualla.L_Rau.S_Acuña.M_Ovalle.C_Articulo_2024.pdf.txtCayhualla.L_Rau.S_Acuña.M_Ovalle.C_Articulo_2024.pdf.txtExtracted texttext/plain50388https://repositorio.utp.edu.pe/backend/api/core/bitstreams/da900f3b-7a8d-474d-8694-8a7681d83004/download08d7b8c9ef6e7fa0f56ed14ea2ec1900MD53L.Cayhualla_S.Rau_M.Acuña_C.Ovalle_Articulo_2024.pdf.txtL.Cayhualla_S.Rau_M.Acuña_C.Ovalle_Articulo_2024.pdf.txtExtracted texttext/plain52014https://repositorio.utp.edu.pe/backend/api/core/bitstreams/266474e8-7440-46e2-9e69-5269fdd52e8c/download259aae281b7145c3c9e9bb3a53813e2cMD58THUMBNAILCayhualla.L_Rau.S_Acuña.M_Ovalle.C_Articulo_2024.pdf.jpgCayhualla.L_Rau.S_Acuña.M_Ovalle.C_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg21027https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3e5e48eb-8496-4c4a-95b5-41e2c02aacdd/downloade0896a6c0e0b603ec2c51ff62966933aMD54L.Cayhualla_S.Rau_M.Acuña_C.Ovalle_Articulo_2024.pdf.jpgL.Cayhualla_S.Rau_M.Acuña_C.Ovalle_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg39049https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c901613c-2598-4279-810d-8f338a8f79b9/download013dad364f16e644bccac2df743cecd5MD59ORIGINALL.Cayhualla_S.Rau_M.Acuña_C.Ovalle_Articulo_2024.pdfL.Cayhualla_S.Rau_M.Acuña_C.Ovalle_Articulo_2024.pdfapplication/pdf491791https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6ca84732-4387-4064-ba37-e9cbe8607bc2/download6eb9893bff64bbda8b688c7345b7e779MD5520.500.12867/14092oai:repositorio.utp.edu.pe:20.500.12867/140922025-11-30 16:40:27.511https://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.912748 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).