Systematic review of artificial intelligence with near-infrared in blueberries
Descripción del Articulo
The fruit quality has a direct impact on how the fruit looks and how tasty the fruit is. The correct use of tools to determine fruit quality is essential to offer the best product for the final consumer. This study has used the preferred reporting items for systematic reviews and meta-analyses (PRIS...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14092 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14092 |
| Nivel de acceso: | acceso abierto |
| Materia: | Artificial intelligence Blueberries Machine learning Chemometry https://purl.org/pe-repo/ocde/ford#2.02.04 |
| Sumario: | The fruit quality has a direct impact on how the fruit looks and how tasty the fruit is. The correct use of tools to determine fruit quality is essential to offer the best product for the final consumer. This study has used the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology. The study objective was elaborate a systematic literature review (SLR) about research of the application of techniques based on artificial intelligence to analyze indicators obtained by near infrared spectroscopy (NIRS) and chemometrics to determine the quality of fruits, including blueberries. The most frequently addressed indicator is the soluble solids concentration (SSC) which was used in several studies with techniques such as support vector machines (SVM) and convolutional neural networks (CNN). According to the results obtained, it is possible to use these techniques to predict blueberry quality indicators. There was an acceptable performance and high accuracy of these models. However, future research could cover other techniques and help to provide better quality control of products in food industries. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).