Exportación Completada — 

Design of a optimization algorithm for binary classification

Descripción del Articulo

In the present work, the design of a system to classify data is carried out, using the Scrum methodology. The validation was carried out by expert judgment, having favorable results in terms of different criteria such as; integrity, ease of use, innovation, and scalability. Regarding the development...

Descripción completa

Detalles Bibliográficos
Autores: Cano Lengua, Miguel Ángel, Papa Quiroz, Erik Alex, Alvarado Cifuentes, Marco Antonio, Alvarado Cifuentes, Carlos Antonio
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/7020
Enlace del recurso:https://hdl.handle.net/20.500.12867/7020
https://doi.org/10.11591/ijeecs.v30.i3.pp1596-1608
Nivel de acceso:acceso abierto
Materia:Machine learning
Binary classification
Algorithm of proximal multipliers
Mathematical optimization
https://purl.org/pe-repo/ocde/ford#1.02.00
Descripción
Sumario:In the present work, the design of a system to classify data is carried out, using the Scrum methodology. The validation was carried out by expert judgment, having favorable results in terms of different criteria such as; integrity, ease of use, innovation, and scalability. Regarding the development of the functional elements of the system, it was obtained; he developed the architecture of the system, the database, and the prototypes, among other points considered. From the implementation of the system, the equation of a classifying plane in three-dimensional space will be obtained, as well as the number of internal iterations that the algorithm develops, the estimated execution time, and the graph of the plane. This system is based on a recently introduced symmetric cone proximal multiplier algorithm to solve separable optimization problems, this algorithm made an application for classification-related support vector machines.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).