Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics

Descripción del Articulo

It is argued that the standard procedures to solve problems in physics particularly in the field of electrodynamics have in a tacit manner the actions of Machine Learning, such as the criteria of Tom Mitchell, (i) task, (ii) performance, and (iii) experience. In this way, it is presented the case of...

Descripción completa

Detalles Bibliográficos
Autor: Nieto-Chaupis, Huber
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1650
Enlace del recurso:https://hdl.handle.net/20.500.13067/1650
https://doi.org/10.1109/WorldS451998.2021.9514008
Nivel de acceso:acceso restringido
Materia:Mathematical structure
Finite cylindric
Physics equations
Machine learning concepts
Tacit manner
Standard procedures
Optimization problems
Advanced algorithm
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:It is argued that the standard procedures to solve problems in physics particularly in the field of electrodynamics have in a tacit manner the actions of Machine Learning, such as the criteria of Tom Mitchell, (i) task, (ii) performance, and (iii) experience. In this way, it is presented the case of electric interaction of two charged objects inside a finite cylindric. It is found that Machine Learning concepts is matching well to the requirements to limit the usage of space and energy. Beyond of using such principles as a methodology to solve problems, the concepts of Machine Learning can be projected in the theory of physics to improve and calibrate the mathematical structure of physics equations without touching their fundamental roles.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).