Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics
Descripción del Articulo
It is argued that the standard procedures to solve problems in physics particularly in the field of electrodynamics have in a tacit manner the actions of Machine Learning, such as the criteria of Tom Mitchell, (i) task, (ii) performance, and (iii) experience. In this way, it is presented the case of...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1650 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/1650 https://doi.org/10.1109/WorldS451998.2021.9514008 |
Nivel de acceso: | acceso restringido |
Materia: | Mathematical structure Finite cylindric Physics equations Machine learning concepts Tacit manner Standard procedures Optimization problems Advanced algorithm https://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | It is argued that the standard procedures to solve problems in physics particularly in the field of electrodynamics have in a tacit manner the actions of Machine Learning, such as the criteria of Tom Mitchell, (i) task, (ii) performance, and (iii) experience. In this way, it is presented the case of electric interaction of two charged objects inside a finite cylindric. It is found that Machine Learning concepts is matching well to the requirements to limit the usage of space and energy. Beyond of using such principles as a methodology to solve problems, the concepts of Machine Learning can be projected in the theory of physics to improve and calibrate the mathematical structure of physics equations without touching their fundamental roles. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).