Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics
Descripción del Articulo
It is argued that the standard procedures to solve problems in physics particularly in the field of electrodynamics have in a tacit manner the actions of Machine Learning, such as the criteria of Tom Mitchell, (i) task, (ii) performance, and (iii) experience. In this way, it is presented the case of...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1650 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/1650 https://doi.org/10.1109/WorldS451998.2021.9514008 |
Nivel de acceso: | acceso restringido |
Materia: | Mathematical structure Finite cylindric Physics equations Machine learning concepts Tacit manner Standard procedures Optimization problems Advanced algorithm https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_e4b97c7caf5bfa4510e8ae6879170d07 |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/1650 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Nieto-Chaupis, Huber2022-02-22T15:01:26Z2022-02-22T15:01:26Z2021-08-19Nieto-Chaupis, H. (2021, July). Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics. In 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4) (pp. 294-298). IEEE.978-1-6654-0096-1https://hdl.handle.net/20.500.13067/16502021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4)https://doi.org/10.1109/WorldS451998.2021.9514008It is argued that the standard procedures to solve problems in physics particularly in the field of electrodynamics have in a tacit manner the actions of Machine Learning, such as the criteria of Tom Mitchell, (i) task, (ii) performance, and (iii) experience. In this way, it is presented the case of electric interaction of two charged objects inside a finite cylindric. It is found that Machine Learning concepts is matching well to the requirements to limit the usage of space and energy. Beyond of using such principles as a methodology to solve problems, the concepts of Machine Learning can be projected in the theory of physics to improve and calibrate the mathematical structure of physics equations without touching their fundamental roles.application/pdfengInstitute of Electrical and Electronics EngineersPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA294298reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAMathematical structureFinite cylindricPhysics equationsMachine learning conceptsTacit mannerStandard proceduresOptimization problemsAdvanced algorithmhttps://purl.org/pe-repo/ocde/ford#2.02.04Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physicsinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85114520661&doi=10.1109%2fWorldS451998.2021.9514008&partnerID=LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/2/license.txt9243398ff393db1861c890baeaeee5f9MD52ORIGINALMachine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics.pdfMachine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics.pdfVer fuenteapplication/pdf99631http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/3/Machine%20Learning%20As%20an%20Advanced%20Algorithm%20To%20Solve%20Optimization%20Problems%20in%20Physics.pdf436bee74cac8a5101763bfefac37dbccMD53TEXTMachine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics.pdf.txtMachine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics.pdf.txtExtracted texttext/plain584http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/4/Machine%20Learning%20As%20an%20Advanced%20Algorithm%20To%20Solve%20Optimization%20Problems%20in%20Physics.pdf.txt30b0d130fea0a81b01dc855f4be8aa31MD54THUMBNAILMachine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics.pdf.jpgMachine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics.pdf.jpgGenerated Thumbnailimage/jpeg5829http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/5/Machine%20Learning%20As%20an%20Advanced%20Algorithm%20To%20Solve%20Optimization%20Problems%20in%20Physics.pdf.jpg41ecc18ab6951b1b871bae7bfc40c95fMD5520.500.13067/1650oai:repositorio.autonoma.edu.pe:20.500.13067/16502022-02-23 03:00:20.22Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe |
dc.title.es_PE.fl_str_mv |
Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics |
title |
Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics |
spellingShingle |
Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics Nieto-Chaupis, Huber Mathematical structure Finite cylindric Physics equations Machine learning concepts Tacit manner Standard procedures Optimization problems Advanced algorithm https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics |
title_full |
Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics |
title_fullStr |
Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics |
title_full_unstemmed |
Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics |
title_sort |
Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics |
author |
Nieto-Chaupis, Huber |
author_facet |
Nieto-Chaupis, Huber |
author_role |
author |
dc.contributor.author.fl_str_mv |
Nieto-Chaupis, Huber |
dc.subject.es_PE.fl_str_mv |
Mathematical structure Finite cylindric Physics equations Machine learning concepts Tacit manner Standard procedures Optimization problems Advanced algorithm |
topic |
Mathematical structure Finite cylindric Physics equations Machine learning concepts Tacit manner Standard procedures Optimization problems Advanced algorithm https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
It is argued that the standard procedures to solve problems in physics particularly in the field of electrodynamics have in a tacit manner the actions of Machine Learning, such as the criteria of Tom Mitchell, (i) task, (ii) performance, and (iii) experience. In this way, it is presented the case of electric interaction of two charged objects inside a finite cylindric. It is found that Machine Learning concepts is matching well to the requirements to limit the usage of space and energy. Beyond of using such principles as a methodology to solve problems, the concepts of Machine Learning can be projected in the theory of physics to improve and calibrate the mathematical structure of physics equations without touching their fundamental roles. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-02-22T15:01:26Z |
dc.date.available.none.fl_str_mv |
2022-02-22T15:01:26Z |
dc.date.issued.fl_str_mv |
2021-08-19 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Nieto-Chaupis, H. (2021, July). Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics. In 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4) (pp. 294-298). IEEE. |
dc.identifier.isbn.none.fl_str_mv |
978-1-6654-0096-1 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/1650 |
dc.identifier.journal.es_PE.fl_str_mv |
2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4) |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/WorldS451998.2021.9514008 |
identifier_str_mv |
Nieto-Chaupis, H. (2021, July). Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics. In 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4) (pp. 294-298). IEEE. 978-1-6654-0096-1 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4) |
url |
https://hdl.handle.net/20.500.13067/1650 https://doi.org/10.1109/WorldS451998.2021.9514008 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114520661&doi=10.1109%2fWorldS451998.2021.9514008&partnerID= |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
AUTONOMA |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.beginpage.es_PE.fl_str_mv |
294 |
dc.source.endpage.es_PE.fl_str_mv |
298 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/3/Machine%20Learning%20As%20an%20Advanced%20Algorithm%20To%20Solve%20Optimization%20Problems%20in%20Physics.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/4/Machine%20Learning%20As%20an%20Advanced%20Algorithm%20To%20Solve%20Optimization%20Problems%20in%20Physics.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/5/Machine%20Learning%20As%20an%20Advanced%20Algorithm%20To%20Solve%20Optimization%20Problems%20in%20Physics.pdf.jpg |
bitstream.checksum.fl_str_mv |
9243398ff393db1861c890baeaeee5f9 436bee74cac8a5101763bfefac37dbcc 30b0d130fea0a81b01dc855f4be8aa31 41ecc18ab6951b1b871bae7bfc40c95f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1774399981261684736 |
score |
13.7211075 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).