Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics

Descripción del Articulo

It is argued that the standard procedures to solve problems in physics particularly in the field of electrodynamics have in a tacit manner the actions of Machine Learning, such as the criteria of Tom Mitchell, (i) task, (ii) performance, and (iii) experience. In this way, it is presented the case of...

Descripción completa

Detalles Bibliográficos
Autor: Nieto-Chaupis, Huber
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1650
Enlace del recurso:https://hdl.handle.net/20.500.13067/1650
https://doi.org/10.1109/WorldS451998.2021.9514008
Nivel de acceso:acceso restringido
Materia:Mathematical structure
Finite cylindric
Physics equations
Machine learning concepts
Tacit manner
Standard procedures
Optimization problems
Advanced algorithm
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_e4b97c7caf5bfa4510e8ae6879170d07
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/1650
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Nieto-Chaupis, Huber2022-02-22T15:01:26Z2022-02-22T15:01:26Z2021-08-19Nieto-Chaupis, H. (2021, July). Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics. In 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4) (pp. 294-298). IEEE.978-1-6654-0096-1https://hdl.handle.net/20.500.13067/16502021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4)https://doi.org/10.1109/WorldS451998.2021.9514008It is argued that the standard procedures to solve problems in physics particularly in the field of electrodynamics have in a tacit manner the actions of Machine Learning, such as the criteria of Tom Mitchell, (i) task, (ii) performance, and (iii) experience. In this way, it is presented the case of electric interaction of two charged objects inside a finite cylindric. It is found that Machine Learning concepts is matching well to the requirements to limit the usage of space and energy. Beyond of using such principles as a methodology to solve problems, the concepts of Machine Learning can be projected in the theory of physics to improve and calibrate the mathematical structure of physics equations without touching their fundamental roles.application/pdfengInstitute of Electrical and Electronics EngineersPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA294298reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAMathematical structureFinite cylindricPhysics equationsMachine learning conceptsTacit mannerStandard proceduresOptimization problemsAdvanced algorithmhttps://purl.org/pe-repo/ocde/ford#2.02.04Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physicsinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85114520661&doi=10.1109%2fWorldS451998.2021.9514008&partnerID=LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/2/license.txt9243398ff393db1861c890baeaeee5f9MD52ORIGINALMachine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics.pdfMachine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics.pdfVer fuenteapplication/pdf99631http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/3/Machine%20Learning%20As%20an%20Advanced%20Algorithm%20To%20Solve%20Optimization%20Problems%20in%20Physics.pdf436bee74cac8a5101763bfefac37dbccMD53TEXTMachine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics.pdf.txtMachine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics.pdf.txtExtracted texttext/plain584http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/4/Machine%20Learning%20As%20an%20Advanced%20Algorithm%20To%20Solve%20Optimization%20Problems%20in%20Physics.pdf.txt30b0d130fea0a81b01dc855f4be8aa31MD54THUMBNAILMachine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics.pdf.jpgMachine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics.pdf.jpgGenerated Thumbnailimage/jpeg5829http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/5/Machine%20Learning%20As%20an%20Advanced%20Algorithm%20To%20Solve%20Optimization%20Problems%20in%20Physics.pdf.jpg41ecc18ab6951b1b871bae7bfc40c95fMD5520.500.13067/1650oai:repositorio.autonoma.edu.pe:20.500.13067/16502022-02-23 03:00:20.22Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe
dc.title.es_PE.fl_str_mv Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics
title Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics
spellingShingle Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics
Nieto-Chaupis, Huber
Mathematical structure
Finite cylindric
Physics equations
Machine learning concepts
Tacit manner
Standard procedures
Optimization problems
Advanced algorithm
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics
title_full Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics
title_fullStr Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics
title_full_unstemmed Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics
title_sort Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics
author Nieto-Chaupis, Huber
author_facet Nieto-Chaupis, Huber
author_role author
dc.contributor.author.fl_str_mv Nieto-Chaupis, Huber
dc.subject.es_PE.fl_str_mv Mathematical structure
Finite cylindric
Physics equations
Machine learning concepts
Tacit manner
Standard procedures
Optimization problems
Advanced algorithm
topic Mathematical structure
Finite cylindric
Physics equations
Machine learning concepts
Tacit manner
Standard procedures
Optimization problems
Advanced algorithm
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description It is argued that the standard procedures to solve problems in physics particularly in the field of electrodynamics have in a tacit manner the actions of Machine Learning, such as the criteria of Tom Mitchell, (i) task, (ii) performance, and (iii) experience. In this way, it is presented the case of electric interaction of two charged objects inside a finite cylindric. It is found that Machine Learning concepts is matching well to the requirements to limit the usage of space and energy. Beyond of using such principles as a methodology to solve problems, the concepts of Machine Learning can be projected in the theory of physics to improve and calibrate the mathematical structure of physics equations without touching their fundamental roles.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2022-02-22T15:01:26Z
dc.date.available.none.fl_str_mv 2022-02-22T15:01:26Z
dc.date.issued.fl_str_mv 2021-08-19
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Nieto-Chaupis, H. (2021, July). Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics. In 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4) (pp. 294-298). IEEE.
dc.identifier.isbn.none.fl_str_mv 978-1-6654-0096-1
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/1650
dc.identifier.journal.es_PE.fl_str_mv 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4)
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/WorldS451998.2021.9514008
identifier_str_mv Nieto-Chaupis, H. (2021, July). Machine Learning As an Advanced Algorithm To Solve Optimization Problems in Physics. In 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4) (pp. 294-298). IEEE.
978-1-6654-0096-1
2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4)
url https://hdl.handle.net/20.500.13067/1650
https://doi.org/10.1109/WorldS451998.2021.9514008
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114520661&doi=10.1109%2fWorldS451998.2021.9514008&partnerID=
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Electrical and Electronics Engineers
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv AUTONOMA
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.beginpage.es_PE.fl_str_mv 294
dc.source.endpage.es_PE.fl_str_mv 298
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/3/Machine%20Learning%20As%20an%20Advanced%20Algorithm%20To%20Solve%20Optimization%20Problems%20in%20Physics.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/4/Machine%20Learning%20As%20an%20Advanced%20Algorithm%20To%20Solve%20Optimization%20Problems%20in%20Physics.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1650/5/Machine%20Learning%20As%20an%20Advanced%20Algorithm%20To%20Solve%20Optimization%20Problems%20in%20Physics.pdf.jpg
bitstream.checksum.fl_str_mv 9243398ff393db1861c890baeaeee5f9
436bee74cac8a5101763bfefac37dbcc
30b0d130fea0a81b01dc855f4be8aa31
41ecc18ab6951b1b871bae7bfc40c95f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1774399981261684736
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).