Design of a optimization algorithm for binary classification

Descripción del Articulo

In the present work, the design of a system to classify data is carried out, using the Scrum methodology. The validation was carried out by expert judgment, having favorable results in terms of different criteria such as; integrity, ease of use, innovation, and scalability. Regarding the development...

Descripción completa

Detalles Bibliográficos
Autores: Cano Lengua, Miguel Ángel, Papa Quiroz, Erik Alex, Alvarado Cifuentes, Marco Antonio, Alvarado Cifuentes, Carlos Antonio
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/7020
Enlace del recurso:https://hdl.handle.net/20.500.12867/7020
https://doi.org/10.11591/ijeecs.v30.i3.pp1596-1608
Nivel de acceso:acceso abierto
Materia:Machine learning
Binary classification
Algorithm of proximal multipliers
Mathematical optimization
https://purl.org/pe-repo/ocde/ford#1.02.00
id UTPD_62ea10ab113d165834e1a87aa62b44fa
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/7020
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Design of a optimization algorithm for binary classification
title Design of a optimization algorithm for binary classification
spellingShingle Design of a optimization algorithm for binary classification
Cano Lengua, Miguel Ángel
Machine learning
Binary classification
Algorithm of proximal multipliers
Mathematical optimization
https://purl.org/pe-repo/ocde/ford#1.02.00
title_short Design of a optimization algorithm for binary classification
title_full Design of a optimization algorithm for binary classification
title_fullStr Design of a optimization algorithm for binary classification
title_full_unstemmed Design of a optimization algorithm for binary classification
title_sort Design of a optimization algorithm for binary classification
author Cano Lengua, Miguel Ángel
author_facet Cano Lengua, Miguel Ángel
Papa Quiroz, Erik Alex
Alvarado Cifuentes, Marco Antonio
Alvarado Cifuentes, Carlos Antonio
author_role author
author2 Papa Quiroz, Erik Alex
Alvarado Cifuentes, Marco Antonio
Alvarado Cifuentes, Carlos Antonio
author2_role author
author
author
dc.contributor.author.fl_str_mv Cano Lengua, Miguel Ángel
Papa Quiroz, Erik Alex
Alvarado Cifuentes, Marco Antonio
Alvarado Cifuentes, Carlos Antonio
dc.subject.es_PE.fl_str_mv Machine learning
Binary classification
Algorithm of proximal multipliers
Mathematical optimization
topic Machine learning
Binary classification
Algorithm of proximal multipliers
Mathematical optimization
https://purl.org/pe-repo/ocde/ford#1.02.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.00
description In the present work, the design of a system to classify data is carried out, using the Scrum methodology. The validation was carried out by expert judgment, having favorable results in terms of different criteria such as; integrity, ease of use, innovation, and scalability. Regarding the development of the functional elements of the system, it was obtained; he developed the architecture of the system, the database, and the prototypes, among other points considered. From the implementation of the system, the equation of a classifying plane in three-dimensional space will be obtained, as well as the number of internal iterations that the algorithm develops, the estimated execution time, and the graph of the plane. This system is based on a recently introduced symmetric cone proximal multiplier algorithm to solve separable optimization problems, this algorithm made an application for classification-related support vector machines.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-26T18:38:14Z
dc.date.available.none.fl_str_mv 2023-05-26T18:38:14Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2502-4760
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/7020
dc.identifier.journal.es_PE.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science
dc.identifier.doi.none.fl_str_mv https://doi.org/10.11591/ijeecs.v30.i3.pp1596-1608
identifier_str_mv 2502-4760
Indonesian Journal of Electrical Engineering and Computer Science
url https://hdl.handle.net/20.500.12867/7020
https://doi.org/10.11591/ijeecs.v30.i3.pp1596-1608
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science;vol. 30, n° 3
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Advanced Engineering and Science
dc.publisher.country.es_PE.fl_str_mv ID
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/1/M.Cano_Articulo_2023.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/3/M.Cano_Articulo_2023.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/4/M.Cano_Articulo_2023.pdf.jpg
bitstream.checksum.fl_str_mv 7d8c511f660322f47868286d6e04413e
8a4605be74aa9ea9d79846c1fba20a33
d3d9cf95a69d9fd14016fff6417702a7
141075c9135b9bc0fb4c0b3ab542335a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984888056315904
spelling Cano Lengua, Miguel ÁngelPapa Quiroz, Erik AlexAlvarado Cifuentes, Marco AntonioAlvarado Cifuentes, Carlos Antonio2023-05-26T18:38:14Z2023-05-26T18:38:14Z20232502-4760https://hdl.handle.net/20.500.12867/7020Indonesian Journal of Electrical Engineering and Computer Sciencehttps://doi.org/10.11591/ijeecs.v30.i3.pp1596-1608In the present work, the design of a system to classify data is carried out, using the Scrum methodology. The validation was carried out by expert judgment, having favorable results in terms of different criteria such as; integrity, ease of use, innovation, and scalability. Regarding the development of the functional elements of the system, it was obtained; he developed the architecture of the system, the database, and the prototypes, among other points considered. From the implementation of the system, the equation of a classifying plane in three-dimensional space will be obtained, as well as the number of internal iterations that the algorithm develops, the estimated execution time, and the graph of the plane. This system is based on a recently introduced symmetric cone proximal multiplier algorithm to solve separable optimization problems, this algorithm made an application for classification-related support vector machines.Campus Lima Centroapplication/pdfengInstitute of Advanced Engineering and ScienceIDIndonesian Journal of Electrical Engineering and Computer Science;vol. 30, n° 3info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningBinary classificationAlgorithm of proximal multipliersMathematical optimizationhttps://purl.org/pe-repo/ocde/ford#1.02.00Design of a optimization algorithm for binary classificationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALM.Cano_Articulo_2023.pdfM.Cano_Articulo_2023.pdfapplication/pdf829622http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/1/M.Cano_Articulo_2023.pdf7d8c511f660322f47868286d6e04413eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTM.Cano_Articulo_2023.pdf.txtM.Cano_Articulo_2023.pdf.txtExtracted texttext/plain44610http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/3/M.Cano_Articulo_2023.pdf.txtd3d9cf95a69d9fd14016fff6417702a7MD53THUMBNAILM.Cano_Articulo_2023.pdf.jpgM.Cano_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg20564http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/4/M.Cano_Articulo_2023.pdf.jpg141075c9135b9bc0fb4c0b3ab542335aMD5420.500.12867/7020oai:repositorio.utp.edu.pe:20.500.12867/70202023-05-26 16:34:29.535Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.938129
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).