Design of a optimization algorithm for binary classification
Descripción del Articulo
In the present work, the design of a system to classify data is carried out, using the Scrum methodology. The validation was carried out by expert judgment, having favorable results in terms of different criteria such as; integrity, ease of use, innovation, and scalability. Regarding the development...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/7020 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/7020 https://doi.org/10.11591/ijeecs.v30.i3.pp1596-1608 |
| Nivel de acceso: | acceso abierto |
| Materia: | Machine learning Binary classification Algorithm of proximal multipliers Mathematical optimization https://purl.org/pe-repo/ocde/ford#1.02.00 |
| id |
UTPD_62ea10ab113d165834e1a87aa62b44fa |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/7020 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Design of a optimization algorithm for binary classification |
| title |
Design of a optimization algorithm for binary classification |
| spellingShingle |
Design of a optimization algorithm for binary classification Cano Lengua, Miguel Ángel Machine learning Binary classification Algorithm of proximal multipliers Mathematical optimization https://purl.org/pe-repo/ocde/ford#1.02.00 |
| title_short |
Design of a optimization algorithm for binary classification |
| title_full |
Design of a optimization algorithm for binary classification |
| title_fullStr |
Design of a optimization algorithm for binary classification |
| title_full_unstemmed |
Design of a optimization algorithm for binary classification |
| title_sort |
Design of a optimization algorithm for binary classification |
| author |
Cano Lengua, Miguel Ángel |
| author_facet |
Cano Lengua, Miguel Ángel Papa Quiroz, Erik Alex Alvarado Cifuentes, Marco Antonio Alvarado Cifuentes, Carlos Antonio |
| author_role |
author |
| author2 |
Papa Quiroz, Erik Alex Alvarado Cifuentes, Marco Antonio Alvarado Cifuentes, Carlos Antonio |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Cano Lengua, Miguel Ángel Papa Quiroz, Erik Alex Alvarado Cifuentes, Marco Antonio Alvarado Cifuentes, Carlos Antonio |
| dc.subject.es_PE.fl_str_mv |
Machine learning Binary classification Algorithm of proximal multipliers Mathematical optimization |
| topic |
Machine learning Binary classification Algorithm of proximal multipliers Mathematical optimization https://purl.org/pe-repo/ocde/ford#1.02.00 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.00 |
| description |
In the present work, the design of a system to classify data is carried out, using the Scrum methodology. The validation was carried out by expert judgment, having favorable results in terms of different criteria such as; integrity, ease of use, innovation, and scalability. Regarding the development of the functional elements of the system, it was obtained; he developed the architecture of the system, the database, and the prototypes, among other points considered. From the implementation of the system, the equation of a classifying plane in three-dimensional space will be obtained, as well as the number of internal iterations that the algorithm develops, the estimated execution time, and the graph of the plane. This system is based on a recently introduced symmetric cone proximal multiplier algorithm to solve separable optimization problems, this algorithm made an application for classification-related support vector machines. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-05-26T18:38:14Z |
| dc.date.available.none.fl_str_mv |
2023-05-26T18:38:14Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2502-4760 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/7020 |
| dc.identifier.journal.es_PE.fl_str_mv |
Indonesian Journal of Electrical Engineering and Computer Science |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.11591/ijeecs.v30.i3.pp1596-1608 |
| identifier_str_mv |
2502-4760 Indonesian Journal of Electrical Engineering and Computer Science |
| url |
https://hdl.handle.net/20.500.12867/7020 https://doi.org/10.11591/ijeecs.v30.i3.pp1596-1608 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofseries.none.fl_str_mv |
Indonesian Journal of Electrical Engineering and Computer Science;vol. 30, n° 3 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Institute of Advanced Engineering and Science |
| dc.publisher.country.es_PE.fl_str_mv |
ID |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/1/M.Cano_Articulo_2023.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/3/M.Cano_Articulo_2023.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/4/M.Cano_Articulo_2023.pdf.jpg |
| bitstream.checksum.fl_str_mv |
7d8c511f660322f47868286d6e04413e 8a4605be74aa9ea9d79846c1fba20a33 d3d9cf95a69d9fd14016fff6417702a7 141075c9135b9bc0fb4c0b3ab542335a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1817984888056315904 |
| spelling |
Cano Lengua, Miguel ÁngelPapa Quiroz, Erik AlexAlvarado Cifuentes, Marco AntonioAlvarado Cifuentes, Carlos Antonio2023-05-26T18:38:14Z2023-05-26T18:38:14Z20232502-4760https://hdl.handle.net/20.500.12867/7020Indonesian Journal of Electrical Engineering and Computer Sciencehttps://doi.org/10.11591/ijeecs.v30.i3.pp1596-1608In the present work, the design of a system to classify data is carried out, using the Scrum methodology. The validation was carried out by expert judgment, having favorable results in terms of different criteria such as; integrity, ease of use, innovation, and scalability. Regarding the development of the functional elements of the system, it was obtained; he developed the architecture of the system, the database, and the prototypes, among other points considered. From the implementation of the system, the equation of a classifying plane in three-dimensional space will be obtained, as well as the number of internal iterations that the algorithm develops, the estimated execution time, and the graph of the plane. This system is based on a recently introduced symmetric cone proximal multiplier algorithm to solve separable optimization problems, this algorithm made an application for classification-related support vector machines.Campus Lima Centroapplication/pdfengInstitute of Advanced Engineering and ScienceIDIndonesian Journal of Electrical Engineering and Computer Science;vol. 30, n° 3info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningBinary classificationAlgorithm of proximal multipliersMathematical optimizationhttps://purl.org/pe-repo/ocde/ford#1.02.00Design of a optimization algorithm for binary classificationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALM.Cano_Articulo_2023.pdfM.Cano_Articulo_2023.pdfapplication/pdf829622http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/1/M.Cano_Articulo_2023.pdf7d8c511f660322f47868286d6e04413eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTM.Cano_Articulo_2023.pdf.txtM.Cano_Articulo_2023.pdf.txtExtracted texttext/plain44610http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/3/M.Cano_Articulo_2023.pdf.txtd3d9cf95a69d9fd14016fff6417702a7MD53THUMBNAILM.Cano_Articulo_2023.pdf.jpgM.Cano_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg20564http://repositorio.utp.edu.pe/bitstream/20.500.12867/7020/4/M.Cano_Articulo_2023.pdf.jpg141075c9135b9bc0fb4c0b3ab542335aMD5420.500.12867/7020oai:repositorio.utp.edu.pe:20.500.12867/70202023-05-26 16:34:29.535Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.938129 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).