A symmetric cone proximal multiplier algorithm

Descripción del Articulo

This paper introduces a proximal multipliers algorithm to solve separable convex symmetric cone minimization problems subject to linear constraints. The algorithm is motivated by the method proposed by Sarmiento et al. (2016, optimization v.65, 2, 501-537), but we consider in the finite-dimensional...

Descripción completa

Detalles Bibliográficos
Autores: Cano Lengua, Miguel Ángel, Papa Quiroz, Erik Alex, Lopez Luis, Julio Cesar, Ichpas Tapia, Rolando
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6877
Enlace del recurso:https://hdl.handle.net/20.500.12867/6877
https://doi.org/10.14445/22315381/IJETT-V71I1P223
Nivel de acceso:acceso abierto
Materia:Algorithm of proximal multipliers
Convex optimization
Symmetrical cones
Support vector machine
https://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:This paper introduces a proximal multipliers algorithm to solve separable convex symmetric cone minimization problems subject to linear constraints. The algorithm is motivated by the method proposed by Sarmiento et al. (2016, optimization v.65, 2, 501-537), but we consider in the finite-dimensional vectorial spaces, further to an inner product, a Euclidean Jordan Algebra. Under some natural assumptions on convex analysis, it is demonstrated that all accumulation points of the primal-dual sequences generated by the algorithm are solutions to the problem and assuming strong assumptions on the generalized distances; we obtain the global convergence to a minimize point. To show the algorithm's functionality, we provide an application to find the optimal hyperplane in Support Vector Machine (SVM) for binary classification.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).