Model of neural networks: probabilistic prediction of floods in banana agricultural field

Descripción del Articulo

During the latest events caused by climate change and the current of the child, Peru has been affected by these natural disasters, such as the flood, which directly affect the Peruvian economy and especially the department of Piura. To prevent and mitigate the problems that affect the department of...

Descripción completa

Detalles Bibliográficos
Autores: Trujillo Moreno, Holiver, Gómez Márquez, Renzon Javier, Cano Lengua, Miguel Ángel, Andrade Arenas, Laberiano
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6881
Enlace del recurso:https://hdl.handle.net/20.500.12867/6881
http://doi.org/10.14445/22315381/IJETT-V71I1P211
Nivel de acceso:acceso abierto
Materia:Artificial neural networks
Predictive modelling
Machine learning
Flood risk
Agriculture
ttps://purl.org/pe-repo/ocde/ford#1.02.00
https://purl.org/pe-repo/ocde/ford#4.01.00
id UTPD_57ddba9ecb43fc9fcb28fe45f19e0b61
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/6881
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Model of neural networks: probabilistic prediction of floods in banana agricultural field
title Model of neural networks: probabilistic prediction of floods in banana agricultural field
spellingShingle Model of neural networks: probabilistic prediction of floods in banana agricultural field
Trujillo Moreno, Holiver
Artificial neural networks
Predictive modelling
Machine learning
Flood risk
Agriculture
ttps://purl.org/pe-repo/ocde/ford#1.02.00
https://purl.org/pe-repo/ocde/ford#4.01.00
title_short Model of neural networks: probabilistic prediction of floods in banana agricultural field
title_full Model of neural networks: probabilistic prediction of floods in banana agricultural field
title_fullStr Model of neural networks: probabilistic prediction of floods in banana agricultural field
title_full_unstemmed Model of neural networks: probabilistic prediction of floods in banana agricultural field
title_sort Model of neural networks: probabilistic prediction of floods in banana agricultural field
author Trujillo Moreno, Holiver
author_facet Trujillo Moreno, Holiver
Gómez Márquez, Renzon Javier
Cano Lengua, Miguel Ángel
Andrade Arenas, Laberiano
author_role author
author2 Gómez Márquez, Renzon Javier
Cano Lengua, Miguel Ángel
Andrade Arenas, Laberiano
author2_role author
author
author
dc.contributor.author.fl_str_mv Trujillo Moreno, Holiver
Gómez Márquez, Renzon Javier
Cano Lengua, Miguel Ángel
Andrade Arenas, Laberiano
dc.subject.es_PE.fl_str_mv Artificial neural networks
Predictive modelling
Machine learning
Flood risk
Agriculture
topic Artificial neural networks
Predictive modelling
Machine learning
Flood risk
Agriculture
ttps://purl.org/pe-repo/ocde/ford#1.02.00
https://purl.org/pe-repo/ocde/ford#4.01.00
dc.subject.ocde.es_PE.fl_str_mv ttps://purl.org/pe-repo/ocde/ford#1.02.00
https://purl.org/pe-repo/ocde/ford#4.01.00
description During the latest events caused by climate change and the current of the child, Peru has been affected by these natural disasters, such as the flood, which directly affect the Peruvian economy and especially the department of Piura. To prevent and mitigate the problems that affect the department of Piura with respect to flooding, the development of a probabilistic system has been proposed with the use of machine learning that will allow us to prevent possible climatic changes and avoid material damage to the area based on predictions. Likewise, the data found in the repository of the free data web page provided by SENAMHI will be extracted to be reused internally and can contribute to the development of the application through neural networks that will facilitate the use of the data. Given this, it has been decided to use the data scientific method, which consists of 10 phases that allow us to identify the main points that contribute to the model of the proposal. This allows us to carry out the necessary validations to make the proposed system feasible. To obtain, as a result, a model that can predict and give warning about the threat of flooding based on the weather behavior of the area. In addition, it is concluded that the prediction models with the help of artificial intelligence tools have better efficiency in terms of forecasts.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-04-27T16:12:23Z
dc.date.available.none.fl_str_mv 2023-04-27T16:12:23Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2231-5381
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/6881
dc.identifier.journal.es_PE.fl_str_mv International Journal of Engineering Trends and Technology
dc.identifier.doi.none.fl_str_mv http://doi.org/10.14445/22315381/IJETT-V71I1P211
identifier_str_mv 2231-5381
International Journal of Engineering Trends and Technology
url https://hdl.handle.net/20.500.12867/6881
http://doi.org/10.14445/22315381/IJETT-V71I1P211
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv International Journal of Engineering Trends and Technology;vol. 71, n° 1
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Seventh Sense Research Group
dc.publisher.country.es_PE.fl_str_mv IN
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/1/H.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/3/H.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/4/H.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.jpg
bitstream.checksum.fl_str_mv 9f0da76d948919a3667b47dc1f079073
8a4605be74aa9ea9d79846c1fba20a33
c277001e738c52ea306c0b6b3e28a964
254a97516c889972f0b3f956a3f25853
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984899980722176
spelling Trujillo Moreno, HoliverGómez Márquez, Renzon JavierCano Lengua, Miguel ÁngelAndrade Arenas, Laberiano2023-04-27T16:12:23Z2023-04-27T16:12:23Z20232231-5381https://hdl.handle.net/20.500.12867/6881International Journal of Engineering Trends and Technologyhttp://doi.org/10.14445/22315381/IJETT-V71I1P211During the latest events caused by climate change and the current of the child, Peru has been affected by these natural disasters, such as the flood, which directly affect the Peruvian economy and especially the department of Piura. To prevent and mitigate the problems that affect the department of Piura with respect to flooding, the development of a probabilistic system has been proposed with the use of machine learning that will allow us to prevent possible climatic changes and avoid material damage to the area based on predictions. Likewise, the data found in the repository of the free data web page provided by SENAMHI will be extracted to be reused internally and can contribute to the development of the application through neural networks that will facilitate the use of the data. Given this, it has been decided to use the data scientific method, which consists of 10 phases that allow us to identify the main points that contribute to the model of the proposal. This allows us to carry out the necessary validations to make the proposed system feasible. To obtain, as a result, a model that can predict and give warning about the threat of flooding based on the weather behavior of the area. In addition, it is concluded that the prediction models with the help of artificial intelligence tools have better efficiency in terms of forecasts.Campus Lima Centroapplication/pdfengSeventh Sense Research GroupINInternational Journal of Engineering Trends and Technology;vol. 71, n° 1info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPArtificial neural networksPredictive modellingMachine learningFlood riskAgriculturettps://purl.org/pe-repo/ocde/ford#1.02.00https://purl.org/pe-repo/ocde/ford#4.01.00Model of neural networks: probabilistic prediction of floods in banana agricultural fieldinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALH.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdfH.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdfapplication/pdf440000http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/1/H.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf9f0da76d948919a3667b47dc1f079073MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTH.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.txtH.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.txtExtracted texttext/plain48985http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/3/H.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.txtc277001e738c52ea306c0b6b3e28a964MD53THUMBNAILH.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.jpgH.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg23067http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/4/H.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.jpg254a97516c889972f0b3f956a3f25853MD5420.500.12867/6881oai:repositorio.utp.edu.pe:20.500.12867/68812023-04-28 09:09:27.483Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.971837
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).