Model of neural networks: probabilistic prediction of floods in banana agricultural field
Descripción del Articulo
During the latest events caused by climate change and the current of the child, Peru has been affected by these natural disasters, such as the flood, which directly affect the Peruvian economy and especially the department of Piura. To prevent and mitigate the problems that affect the department of...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Tecnológica del Perú |
Repositorio: | UTP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/6881 |
Enlace del recurso: | https://hdl.handle.net/20.500.12867/6881 http://doi.org/10.14445/22315381/IJETT-V71I1P211 |
Nivel de acceso: | acceso abierto |
Materia: | Artificial neural networks Predictive modelling Machine learning Flood risk Agriculture ttps://purl.org/pe-repo/ocde/ford#1.02.00 https://purl.org/pe-repo/ocde/ford#4.01.00 |
id |
UTPD_57ddba9ecb43fc9fcb28fe45f19e0b61 |
---|---|
oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/6881 |
network_acronym_str |
UTPD |
network_name_str |
UTP-Institucional |
repository_id_str |
4782 |
dc.title.es_PE.fl_str_mv |
Model of neural networks: probabilistic prediction of floods in banana agricultural field |
title |
Model of neural networks: probabilistic prediction of floods in banana agricultural field |
spellingShingle |
Model of neural networks: probabilistic prediction of floods in banana agricultural field Trujillo Moreno, Holiver Artificial neural networks Predictive modelling Machine learning Flood risk Agriculture ttps://purl.org/pe-repo/ocde/ford#1.02.00 https://purl.org/pe-repo/ocde/ford#4.01.00 |
title_short |
Model of neural networks: probabilistic prediction of floods in banana agricultural field |
title_full |
Model of neural networks: probabilistic prediction of floods in banana agricultural field |
title_fullStr |
Model of neural networks: probabilistic prediction of floods in banana agricultural field |
title_full_unstemmed |
Model of neural networks: probabilistic prediction of floods in banana agricultural field |
title_sort |
Model of neural networks: probabilistic prediction of floods in banana agricultural field |
author |
Trujillo Moreno, Holiver |
author_facet |
Trujillo Moreno, Holiver Gómez Márquez, Renzon Javier Cano Lengua, Miguel Ángel Andrade Arenas, Laberiano |
author_role |
author |
author2 |
Gómez Márquez, Renzon Javier Cano Lengua, Miguel Ángel Andrade Arenas, Laberiano |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Trujillo Moreno, Holiver Gómez Márquez, Renzon Javier Cano Lengua, Miguel Ángel Andrade Arenas, Laberiano |
dc.subject.es_PE.fl_str_mv |
Artificial neural networks Predictive modelling Machine learning Flood risk Agriculture |
topic |
Artificial neural networks Predictive modelling Machine learning Flood risk Agriculture ttps://purl.org/pe-repo/ocde/ford#1.02.00 https://purl.org/pe-repo/ocde/ford#4.01.00 |
dc.subject.ocde.es_PE.fl_str_mv |
ttps://purl.org/pe-repo/ocde/ford#1.02.00 https://purl.org/pe-repo/ocde/ford#4.01.00 |
description |
During the latest events caused by climate change and the current of the child, Peru has been affected by these natural disasters, such as the flood, which directly affect the Peruvian economy and especially the department of Piura. To prevent and mitigate the problems that affect the department of Piura with respect to flooding, the development of a probabilistic system has been proposed with the use of machine learning that will allow us to prevent possible climatic changes and avoid material damage to the area based on predictions. Likewise, the data found in the repository of the free data web page provided by SENAMHI will be extracted to be reused internally and can contribute to the development of the application through neural networks that will facilitate the use of the data. Given this, it has been decided to use the data scientific method, which consists of 10 phases that allow us to identify the main points that contribute to the model of the proposal. This allows us to carry out the necessary validations to make the proposed system feasible. To obtain, as a result, a model that can predict and give warning about the threat of flooding based on the weather behavior of the area. In addition, it is concluded that the prediction models with the help of artificial intelligence tools have better efficiency in terms of forecasts. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-04-27T16:12:23Z |
dc.date.available.none.fl_str_mv |
2023-04-27T16:12:23Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2231-5381 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/6881 |
dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Engineering Trends and Technology |
dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.14445/22315381/IJETT-V71I1P211 |
identifier_str_mv |
2231-5381 International Journal of Engineering Trends and Technology |
url |
https://hdl.handle.net/20.500.12867/6881 http://doi.org/10.14445/22315381/IJETT-V71I1P211 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.none.fl_str_mv |
International Journal of Engineering Trends and Technology;vol. 71, n° 1 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Seventh Sense Research Group |
dc.publisher.country.es_PE.fl_str_mv |
IN |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
instname_str |
Universidad Tecnológica del Perú |
instacron_str |
UTP |
institution |
UTP |
reponame_str |
UTP-Institucional |
collection |
UTP-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/1/H.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/3/H.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/4/H.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
9f0da76d948919a3667b47dc1f079073 8a4605be74aa9ea9d79846c1fba20a33 c277001e738c52ea306c0b6b3e28a964 254a97516c889972f0b3f956a3f25853 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
_version_ |
1817984899980722176 |
spelling |
Trujillo Moreno, HoliverGómez Márquez, Renzon JavierCano Lengua, Miguel ÁngelAndrade Arenas, Laberiano2023-04-27T16:12:23Z2023-04-27T16:12:23Z20232231-5381https://hdl.handle.net/20.500.12867/6881International Journal of Engineering Trends and Technologyhttp://doi.org/10.14445/22315381/IJETT-V71I1P211During the latest events caused by climate change and the current of the child, Peru has been affected by these natural disasters, such as the flood, which directly affect the Peruvian economy and especially the department of Piura. To prevent and mitigate the problems that affect the department of Piura with respect to flooding, the development of a probabilistic system has been proposed with the use of machine learning that will allow us to prevent possible climatic changes and avoid material damage to the area based on predictions. Likewise, the data found in the repository of the free data web page provided by SENAMHI will be extracted to be reused internally and can contribute to the development of the application through neural networks that will facilitate the use of the data. Given this, it has been decided to use the data scientific method, which consists of 10 phases that allow us to identify the main points that contribute to the model of the proposal. This allows us to carry out the necessary validations to make the proposed system feasible. To obtain, as a result, a model that can predict and give warning about the threat of flooding based on the weather behavior of the area. In addition, it is concluded that the prediction models with the help of artificial intelligence tools have better efficiency in terms of forecasts.Campus Lima Centroapplication/pdfengSeventh Sense Research GroupINInternational Journal of Engineering Trends and Technology;vol. 71, n° 1info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPArtificial neural networksPredictive modellingMachine learningFlood riskAgriculturettps://purl.org/pe-repo/ocde/ford#1.02.00https://purl.org/pe-repo/ocde/ford#4.01.00Model of neural networks: probabilistic prediction of floods in banana agricultural fieldinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALH.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdfH.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdfapplication/pdf440000http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/1/H.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf9f0da76d948919a3667b47dc1f079073MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTH.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.txtH.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.txtExtracted texttext/plain48985http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/3/H.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.txtc277001e738c52ea306c0b6b3e28a964MD53THUMBNAILH.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.jpgH.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg23067http://repositorio.utp.edu.pe/bitstream/20.500.12867/6881/4/H.Trujillo_R.Gomez_M.Cano_L.Andrare_Articulo_2023.pdf.jpg254a97516c889972f0b3f956a3f25853MD5420.500.12867/6881oai:repositorio.utp.edu.pe:20.500.12867/68812023-04-28 09:09:27.483Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.971837 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).