Vector support machine algorithm applied to the improvement of satisfaction levels in the acquisition of professional skills

Descripción del Articulo

The study carried out identifies the metricss of the predictive model obtained through the support vector machine (VSM) algorithm, which will be applied in the satisfaction of the acquisition of professional skills of the students of the professional engineering career. As part of the development, t...

Descripción completa

Detalles Bibliográficos
Autores: León Velarde, César Gerardo, Chamorro-Atalaya, Omar, Ortega-Galicio, Orlando, Morales-Romero, Guillermo, Villar-Valenzuela, Darío, Meza-Chaupis, Yeferzon, Quevedo-Sánchez, Lourdes
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/5813
Enlace del recurso:https://hdl.handle.net/20.500.12867/5813
http://doi.org/10.11591/ijeecs.v26.i1.pp597-604
Nivel de acceso:acceso abierto
Materia:Learning algorithm
Virtual learning
Satisfaction
https://purl.org/pe-repo/ocde/ford#2.02.03
id UTPD_192020d97428765c52a78b8c8b960dc2
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/5813
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Vector support machine algorithm applied to the improvement of satisfaction levels in the acquisition of professional skills
title Vector support machine algorithm applied to the improvement of satisfaction levels in the acquisition of professional skills
spellingShingle Vector support machine algorithm applied to the improvement of satisfaction levels in the acquisition of professional skills
León Velarde, César Gerardo
Learning algorithm
Virtual learning
Satisfaction
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Vector support machine algorithm applied to the improvement of satisfaction levels in the acquisition of professional skills
title_full Vector support machine algorithm applied to the improvement of satisfaction levels in the acquisition of professional skills
title_fullStr Vector support machine algorithm applied to the improvement of satisfaction levels in the acquisition of professional skills
title_full_unstemmed Vector support machine algorithm applied to the improvement of satisfaction levels in the acquisition of professional skills
title_sort Vector support machine algorithm applied to the improvement of satisfaction levels in the acquisition of professional skills
author León Velarde, César Gerardo
author_facet León Velarde, César Gerardo
Chamorro-Atalaya, Omar
Ortega-Galicio, Orlando
Morales-Romero, Guillermo
Villar-Valenzuela, Darío
Meza-Chaupis, Yeferzon
Quevedo-Sánchez, Lourdes
author_role author
author2 Chamorro-Atalaya, Omar
Ortega-Galicio, Orlando
Morales-Romero, Guillermo
Villar-Valenzuela, Darío
Meza-Chaupis, Yeferzon
Quevedo-Sánchez, Lourdes
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv León Velarde, César Gerardo
Chamorro-Atalaya, Omar
Ortega-Galicio, Orlando
Morales-Romero, Guillermo
Villar-Valenzuela, Darío
Meza-Chaupis, Yeferzon
Quevedo-Sánchez, Lourdes
dc.subject.es_PE.fl_str_mv Learning algorithm
Virtual learning
Satisfaction
topic Learning algorithm
Virtual learning
Satisfaction
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description The study carried out identifies the metricss of the predictive model obtained through the support vector machine (VSM) algorithm, which will be applied in the satisfaction of the acquisition of professional skills of the students of the professional engineering career. As part of the development, the statistical classification tool is used, during the development of the research, it was identified that the predictive model presents as general metrics an accuracy of 82.1%, a precision of 70.72%, a sensitivity of 91.06% and a specificity of 87.60%. Through this model, it contributes significantly to decision-making in relation to improving satisfaction related to the acquisition of professional skills in engineering students, since decision-making by university authorities will have a scientific basis, to take early and timely actions in relation to the predictive elements.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-27T17:32:22Z
dc.date.available.none.fl_str_mv 2022-07-27T17:32:22Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2502-4760
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/5813
dc.identifier.journal.es_PE.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science
dc.identifier.doi.none.fl_str_mv http://doi.org/10.11591/ijeecs.v26.i1.pp597-604
identifier_str_mv 2502-4760
Indonesian Journal of Electrical Engineering and Computer Science
url https://hdl.handle.net/20.500.12867/5813
http://doi.org/10.11591/ijeecs.v26.i1.pp597-604
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartofseries.none.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science;vol. 26, n° 1
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Advanced Engineering and Science
dc.publisher.country.es_PE.fl_str_mv ID
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/5813/1/C.Leon_IJEECS_Articulo_eng_2022.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5813/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5813/3/C.Leon_IJEECS_Articulo_eng_2022.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5813/4/C.Leon_IJEECS_Articulo_eng_2022.pdf.jpg
bitstream.checksum.fl_str_mv ffbe0e3a6e4612c60fafeb4f3b9a53b7
8a4605be74aa9ea9d79846c1fba20a33
8ea2e40550a27283312acb61b72d516a
3d79f7c16f449afb37f748485b218755
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984893461725184
spelling León Velarde, César GerardoChamorro-Atalaya, OmarOrtega-Galicio, OrlandoMorales-Romero, GuillermoVillar-Valenzuela, DaríoMeza-Chaupis, YeferzonQuevedo-Sánchez, Lourdes2022-07-27T17:32:22Z2022-07-27T17:32:22Z20222502-4760https://hdl.handle.net/20.500.12867/5813Indonesian Journal of Electrical Engineering and Computer Sciencehttp://doi.org/10.11591/ijeecs.v26.i1.pp597-604The study carried out identifies the metricss of the predictive model obtained through the support vector machine (VSM) algorithm, which will be applied in the satisfaction of the acquisition of professional skills of the students of the professional engineering career. As part of the development, the statistical classification tool is used, during the development of the research, it was identified that the predictive model presents as general metrics an accuracy of 82.1%, a precision of 70.72%, a sensitivity of 91.06% and a specificity of 87.60%. Through this model, it contributes significantly to decision-making in relation to improving satisfaction related to the acquisition of professional skills in engineering students, since decision-making by university authorities will have a scientific basis, to take early and timely actions in relation to the predictive elements.Campus Lima Centroapplication/pdfspaInstitute of Advanced Engineering and ScienceIDIndonesian Journal of Electrical Engineering and Computer Science;vol. 26, n° 1info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPLearning algorithmVirtual learningSatisfactionhttps://purl.org/pe-repo/ocde/ford#2.02.03Vector support machine algorithm applied to the improvement of satisfaction levels in the acquisition of professional skillsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALC.Leon_IJEECS_Articulo_eng_2022.pdfC.Leon_IJEECS_Articulo_eng_2022.pdfapplication/pdf551201http://repositorio.utp.edu.pe/bitstream/20.500.12867/5813/1/C.Leon_IJEECS_Articulo_eng_2022.pdfffbe0e3a6e4612c60fafeb4f3b9a53b7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5813/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTC.Leon_IJEECS_Articulo_eng_2022.pdf.txtC.Leon_IJEECS_Articulo_eng_2022.pdf.txtExtracted texttext/plain29756http://repositorio.utp.edu.pe/bitstream/20.500.12867/5813/3/C.Leon_IJEECS_Articulo_eng_2022.pdf.txt8ea2e40550a27283312acb61b72d516aMD53THUMBNAILC.Leon_IJEECS_Articulo_eng_2022.pdf.jpgC.Leon_IJEECS_Articulo_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg21228http://repositorio.utp.edu.pe/bitstream/20.500.12867/5813/4/C.Leon_IJEECS_Articulo_eng_2022.pdf.jpg3d79f7c16f449afb37f748485b218755MD5420.500.12867/5813oai:repositorio.utp.edu.pe:20.500.12867/58132022-08-06 17:04:08.671Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.959364
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).