Sentiment analysis through twitter as a mechanism for assessing university satisfaction

Descripción del Articulo

Currently, the data generated in the university environment related to the perception of satisfaction is generated through surveys with categorical response questions defined on a Likert scale, with factors already defined to be evaluated, applied once per academic semester, which generates very bia...

Descripción completa

Detalles Bibliográficos
Autores: León Velarde, César Gerardo, Chamorro-Atalaya, Omar, Arce-Santillan, Dora, Morales-Romero, Guillermo, Ramos-Salazar, Primitiva, Auqui-Ramos, Elizabeth, Levano-Stella, Miguel
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6009
Enlace del recurso:https://hdl.handle.net/20.500.12867/6009
http://doi.org/10.11591/ijeecs.v28.i1.pp430-440
Nivel de acceso:acceso abierto
Materia:Sentiment analysis
Student satisfaction
Teacher performance
Virtual learning
Text mining
https://purl.org/pe-repo/ocde/ford#5.03.01
https://purl.org/pe-repo/ocde/ford#2.02.03
Descripción
Sumario:Currently, the data generated in the university environment related to the perception of satisfaction is generated through surveys with categorical response questions defined on a Likert scale, with factors already defined to be evaluated, applied once per academic semester, which generates very biased information. This leads us to wonder why this survey is applied only once and why it only asks about some factors. The objective of the article is to demonstrate the feasibility of a proposal to determine the degree of perception of student satisfaction through the use of data science and natural language processing (NLP), supported by the social network twitter, as an element of data collection. As a result of the application of this proposal based on data science, it was possible to determine the level of student satisfaction, being 57.27%, through sentiment analysis using the Python library "NLTK"; Thus, it was also possible to extract texts linked to the relevant factors of teaching performance to achieve student satisfaction, through the term frequency and inverse document frequency (TF-IDF) approach, these being those linked to the use of tools of simulation in the virtual learning process.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).