Sentiment analysis through twitter as a mechanism for assessing university satisfaction

Descripción del Articulo

Currently, the data generated in the university environment related to the perception of satisfaction is generated through surveys with categorical response questions defined on a Likert scale, with factors already defined to be evaluated, applied once per academic semester, which generates very bia...

Descripción completa

Detalles Bibliográficos
Autores: León Velarde, César Gerardo, Chamorro-Atalaya, Omar, Arce-Santillan, Dora, Morales-Romero, Guillermo, Ramos-Salazar, Primitiva, Auqui-Ramos, Elizabeth, Levano-Stella, Miguel
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6009
Enlace del recurso:https://hdl.handle.net/20.500.12867/6009
http://doi.org/10.11591/ijeecs.v28.i1.pp430-440
Nivel de acceso:acceso abierto
Materia:Sentiment analysis
Student satisfaction
Teacher performance
Virtual learning
Text mining
https://purl.org/pe-repo/ocde/ford#5.03.01
https://purl.org/pe-repo/ocde/ford#2.02.03
id UTPD_101a5169bdccd846486ca32c2afcbb9d
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/6009
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Sentiment analysis through twitter as a mechanism for assessing university satisfaction
title Sentiment analysis through twitter as a mechanism for assessing university satisfaction
spellingShingle Sentiment analysis through twitter as a mechanism for assessing university satisfaction
León Velarde, César Gerardo
Sentiment analysis
Student satisfaction
Teacher performance
Virtual learning
Text mining
https://purl.org/pe-repo/ocde/ford#5.03.01
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Sentiment analysis through twitter as a mechanism for assessing university satisfaction
title_full Sentiment analysis through twitter as a mechanism for assessing university satisfaction
title_fullStr Sentiment analysis through twitter as a mechanism for assessing university satisfaction
title_full_unstemmed Sentiment analysis through twitter as a mechanism for assessing university satisfaction
title_sort Sentiment analysis through twitter as a mechanism for assessing university satisfaction
author León Velarde, César Gerardo
author_facet León Velarde, César Gerardo
Chamorro-Atalaya, Omar
Arce-Santillan, Dora
Morales-Romero, Guillermo
Ramos-Salazar, Primitiva
Auqui-Ramos, Elizabeth
Levano-Stella, Miguel
author_role author
author2 Chamorro-Atalaya, Omar
Arce-Santillan, Dora
Morales-Romero, Guillermo
Ramos-Salazar, Primitiva
Auqui-Ramos, Elizabeth
Levano-Stella, Miguel
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv León Velarde, César Gerardo
Chamorro-Atalaya, Omar
Arce-Santillan, Dora
Morales-Romero, Guillermo
Ramos-Salazar, Primitiva
Auqui-Ramos, Elizabeth
Levano-Stella, Miguel
dc.subject.es_PE.fl_str_mv Sentiment analysis
Student satisfaction
Teacher performance
Virtual learning
Text mining
topic Sentiment analysis
Student satisfaction
Teacher performance
Virtual learning
Text mining
https://purl.org/pe-repo/ocde/ford#5.03.01
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.03.01
https://purl.org/pe-repo/ocde/ford#2.02.03
description Currently, the data generated in the university environment related to the perception of satisfaction is generated through surveys with categorical response questions defined on a Likert scale, with factors already defined to be evaluated, applied once per academic semester, which generates very biased information. This leads us to wonder why this survey is applied only once and why it only asks about some factors. The objective of the article is to demonstrate the feasibility of a proposal to determine the degree of perception of student satisfaction through the use of data science and natural language processing (NLP), supported by the social network twitter, as an element of data collection. As a result of the application of this proposal based on data science, it was possible to determine the level of student satisfaction, being 57.27%, through sentiment analysis using the Python library "NLTK"; Thus, it was also possible to extract texts linked to the relevant factors of teaching performance to achieve student satisfaction, through the term frequency and inverse document frequency (TF-IDF) approach, these being those linked to the use of tools of simulation in the virtual learning process.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-06T14:26:12Z
dc.date.available.none.fl_str_mv 2022-10-06T14:26:12Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2502-4752
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/6009
dc.identifier.journal.es_PE.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science
dc.identifier.doi.none.fl_str_mv http://doi.org/10.11591/ijeecs.v28.i1.pp430-440
identifier_str_mv 2502-4752
Indonesian Journal of Electrical Engineering and Computer Science
url https://hdl.handle.net/20.500.12867/6009
http://doi.org/10.11591/ijeecs.v28.i1.pp430-440
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartofseries.none.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science;vol. 28, n° 1, pp. 430-440
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Advanced Engineering and Science
dc.publisher.country.es_PE.fl_str_mv ID
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/6009/1/C.Leon_IJEECS_Articulo_eng_2022.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6009/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6009/3/C.Leon_IJEECS_Articulo_eng_2022.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6009/4/C.Leon_IJEECS_Articulo_eng_2022.pdf.jpg
bitstream.checksum.fl_str_mv 2ce533a2ac59e9c2f21c13378d462dc1
8a4605be74aa9ea9d79846c1fba20a33
9fe5dabd0a2685b0288d5d23129aa5e2
307436984fe1a3e64c14746c055ef888
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984913614307328
spelling León Velarde, César GerardoChamorro-Atalaya, OmarArce-Santillan, DoraMorales-Romero, GuillermoRamos-Salazar, PrimitivaAuqui-Ramos, ElizabethLevano-Stella, Miguel2022-10-06T14:26:12Z2022-10-06T14:26:12Z20222502-4752https://hdl.handle.net/20.500.12867/6009Indonesian Journal of Electrical Engineering and Computer Sciencehttp://doi.org/10.11591/ijeecs.v28.i1.pp430-440Currently, the data generated in the university environment related to the perception of satisfaction is generated through surveys with categorical response questions defined on a Likert scale, with factors already defined to be evaluated, applied once per academic semester, which generates very biased information. This leads us to wonder why this survey is applied only once and why it only asks about some factors. The objective of the article is to demonstrate the feasibility of a proposal to determine the degree of perception of student satisfaction through the use of data science and natural language processing (NLP), supported by the social network twitter, as an element of data collection. As a result of the application of this proposal based on data science, it was possible to determine the level of student satisfaction, being 57.27%, through sentiment analysis using the Python library "NLTK"; Thus, it was also possible to extract texts linked to the relevant factors of teaching performance to achieve student satisfaction, through the term frequency and inverse document frequency (TF-IDF) approach, these being those linked to the use of tools of simulation in the virtual learning process.Campus Lima Centroapplication/pdfspaInstitute of Advanced Engineering and ScienceIDIndonesian Journal of Electrical Engineering and Computer Science;vol. 28, n° 1, pp. 430-440info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPSentiment analysisStudent satisfactionTeacher performanceVirtual learningText mininghttps://purl.org/pe-repo/ocde/ford#5.03.01https://purl.org/pe-repo/ocde/ford#2.02.03Sentiment analysis through twitter as a mechanism for assessing university satisfactioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALC.Leon_IJEECS_Articulo_eng_2022.pdfC.Leon_IJEECS_Articulo_eng_2022.pdfapplication/pdf417890http://repositorio.utp.edu.pe/bitstream/20.500.12867/6009/1/C.Leon_IJEECS_Articulo_eng_2022.pdf2ce533a2ac59e9c2f21c13378d462dc1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6009/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTC.Leon_IJEECS_Articulo_eng_2022.pdf.txtC.Leon_IJEECS_Articulo_eng_2022.pdf.txtExtracted texttext/plain43531http://repositorio.utp.edu.pe/bitstream/20.500.12867/6009/3/C.Leon_IJEECS_Articulo_eng_2022.pdf.txt9fe5dabd0a2685b0288d5d23129aa5e2MD53THUMBNAILC.Leon_IJEECS_Articulo_eng_2022.pdf.jpgC.Leon_IJEECS_Articulo_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg19934http://repositorio.utp.edu.pe/bitstream/20.500.12867/6009/4/C.Leon_IJEECS_Articulo_eng_2022.pdf.jpg307436984fe1a3e64c14746c055ef888MD5420.500.12867/6009oai:repositorio.utp.edu.pe:20.500.12867/60092022-10-06 11:06:26.489Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.888049
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).