Use of text mining for understanding Peruvian students and faculties’ perceptions on bibliometrics training

Descripción del Articulo

Background: Studies on bibliometrics and informetrics training have focused on teachers and curricular experts’ opinion, only a few studies have examined undergraduate students and practitioners’ perceptions. Objective: To understand how librarianship students and professionals perceive the bibliome...

Descripción completa

Detalles Bibliográficos
Autores: Vílchez‐Román, Carlos, Alhuay Quispe, Joel
Formato: objeto de conferencia
Fecha de Publicación:2016
Institución:Universidad San Ignacio de Loyola
Repositorio:USIL-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.usil.edu.pe:20.500.14005/1934
Enlace del recurso:https://hdl.handle.net/20.500.14005/1934
http://ceur-ws.org/Vol-1743/paper20.pdf
Nivel de acceso:acceso embargado
Materia:Minería de texto
Bibliometría
Estudiantes universitarios
Cuestionarios
Percepción
Profesionales
Descripción
Sumario:Background: Studies on bibliometrics and informetrics training have focused on teachers and curricular experts’ opinion, only a few studies have examined undergraduate students and practitioners’ perceptions. Objective: To understand how librarianship students and professionals perceive the bibliometrics and informetrics training delivered to them. Methods: For data collection, we used a survey with opened-ended questions, to know the genuine responses of the participants. After working with the automatic term extraction technique, for codifying the answers we employed a data dictionary for quantifying the frequency of occurrences. The software programs used at this stage were ter-MEXt and LWIC. Data analysis was carried out with statistics of mean difference and the correlation coefficient. Results: The output of statistical analysis lets us understood how students and practitioners perceive the bibliometrics and informetrics training delivered to them. Conclusion: Text mining techniques facilitates the processing of responses to opened-ended questions, and contributes with a quantitative approach to analyzing people’s opinions.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).