Detección de depresión a través de análisis textual utilizando aprendizaje automático, 2017

Descripción del Articulo

La presente tesis incluye la creación de un modelo predictivo, el análisis, diseño e implementación de una aplicación web usando análisis textual y aprendizaje automático para la detección precoz de la depresión, la cual es la principal causa de problemas de salud y discapacidad en todo el mundo. El...

Descripción completa

Detalles Bibliográficos
Autor: Orué Medina, Ariana Maybee
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Universidad Ricardo Palma
Repositorio:URP-Tesis
Lenguaje:español
OAI Identifier:oai:repositorio.urp.edu.pe:20.500.14138/1674
Enlace del recurso:https://hdl.handle.net/20.500.14138/1674
Nivel de acceso:acceso abierto
Materia:depresión
detección de la depresión
análisis textual
aprendizaje automático
máquina de vectores de soporte
TD-IDF
Descripción
Sumario:La presente tesis incluye la creación de un modelo predictivo, el análisis, diseño e implementación de una aplicación web usando análisis textual y aprendizaje automático para la detección precoz de la depresión, la cual es la principal causa de problemas de salud y discapacidad en todo el mundo. El objetivo de la investigación es optimizar el tiempo de atención de forma oportuna a probables pacientes con depresión, identificar características específicas en individuos considerados con factores de riesgo de depresión y determinar los niveles de depresión a probables pacientes a través del análisis textual utilizando aprendizaje automático. Se contó con una muestra perteneciente a 596 alumnos de la Universidad César Vallejo; a los cuales se le aplicó dos herramientas estandarizadas a nivel mundial “Inventario de Beck II” y “Test de Frases Incompletas Sacks” para hallar la depresión e identificar a las personas con el trastorno mental mencionado. Es preciso señalar que el tipo de estudio es aplicado y exploratorio. Cabe resaltar que, para el procesamiento y tratamiento de datos, se utilizó la medida numérica del análisis textual TF-IDF, las técnicas de aprendizaje automático “Máquina de Vectores de Soporte”, el servicio de Microsoft Azure Machine Learning con R. Finalmente, los resultados indicaron que el modelo predictivo usado para el desarrollo de un aplicativo móvil para detectar depresión tiene una exactitud del 99,2 %.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).