Modelo de aprendizaje automático para mejorar la predicción de la quiebra de empresas

Descripción del Articulo

El objetivo del trabajo de investigación fue desarrollar un modelo de aprendizaje automático para optimizar la predicción de la quiebra de empresas. El tipo de investigación fue aplicada con enfoque cuantitativo y diseño experimental. Asimismo, la muestra estuvo conformada por 379 empresas ubicadas...

Descripción completa

Detalles Bibliográficos
Autor: Quinteros Navarro, Dino Michael
Formato: tesis doctoral
Fecha de Publicación:2025
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/25478
Enlace del recurso:https://hdl.handle.net/20.500.12672/25478
Nivel de acceso:acceso abierto
Materia:Aprendizaje Automático
Empresas
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:El objetivo del trabajo de investigación fue desarrollar un modelo de aprendizaje automático para optimizar la predicción de la quiebra de empresas. El tipo de investigación fue aplicada con enfoque cuantitativo y diseño experimental. Asimismo, la muestra estuvo conformada por 379 empresas ubicadas en Lima Metropolitana, donde se realizó la aplicación de un instrumento (encuesta) y se clasificó en dos dimensiones: Entorno Empresarial y Situación Financiera. En ese marco, las actividades realizadas permitieron generar la matriz del conjunto de datos de 7,959 celdas. Posterior a ello, se ejecutaron 4 etapas, la primera etapa fue realizar el preprocesamiento: Limpieza de datos, normalización y categorización. La segunda etapa fue evaluar algoritmos y seleccionar el de mejor performance. La tercera etapa consistió en implementar el modelo mediante la identificación de factores relevantes y generar correlaciones. La cuarta etapa fue evaluar el modelo mediante métricas de performance. En ese sentido, los resultados mostraron que el modelo optimizado de aprendizaje supervisado (MO2A) obtuvo precisión 97%, exactitud 97%, sensibilidad 99% y f1-score 98%. Asimismo, para comprobar las hipótesis se realizaron las medidas estadísticas de Wilcoxon, coeficientes de correlación de Rho Spearman y Kappa de Cohen. Finalmente, se precisa que el desarrollo de un modelo de aprendizaje automático para mejorar la predicción de la quiebra de empresas propicia mejores panoramas para la toma de decisiones y evitar escenarios de quiebra empresarial.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).