Existencia de medidas invariantes para sistemas dinamicos no continuos en [O, 1]
Descripción del Articulo
En este trabajo abordaremos el problema de la existencia de medidas invariantes para sistemas dinámicos discretos. Más especificamente estudiaremos el teorema de Krylov-Bogolubov que establece que todo sistema dinámico definido en un espacio métrico compacto admite por lo menos una medida invariante...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2024 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | UNMSM-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:cybertesis.unmsm.edu.pe:20.500.12672/24452 |
Enlace del recurso: | https://hdl.handle.net/20.500.12672/24452 |
Nivel de acceso: | acceso abierto |
Materia: | Sistemas dinámicos Ecuaciones diferenciales https://purl.org/pe-repo/ocde/ford#1.01.00 |
Sumario: | En este trabajo abordaremos el problema de la existencia de medidas invariantes para sistemas dinámicos discretos. Más especificamente estudiaremos el teorema de Krylov-Bogolubov que establece que todo sistema dinámico definido en un espacio métrico compacto admite por lo menos una medida invariante de probabilidad, siguiendo la bibliografía de (Barreira, 2012); para sistemas dinámicos no continuos definidos en [0, 1] también establecemos la existencia de dichas medidas, para ello estudiamos el artículo (Pires, 2016). |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).