Framework usando un componente de preprocesamiento y MARS para la predicción de ventas en las pymes del Perú

Descripción del Articulo

Se propone un framework utilizando un componente de pre-procesamiento y MARS para obtener una predicción de ventas de forma precisa y confiable reduciendo el tiempo y costos. Para ello lo primero que se realizo fue obtener las ventas mensuales de los productos “Resorte Toy Corolla” y “Resorte Toy Co...

Descripción completa

Detalles Bibliográficos
Autor: Berto Castro, Felix Ricardo
Formato: tesis de grado
Fecha de Publicación:2018
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/8895
Enlace del recurso:https://hdl.handle.net/20.500.12672/8895
Nivel de acceso:acceso abierto
Materia:Microempresas
Predicciones
Pronóstico de ventas
Ventas - Procesamiento de datos
https://purl.org/pe-repo/ocde/ford#2.02.04
id UNMS_80f32b26e9216cc2f7447540600fa89c
oai_identifier_str oai:cybertesis.unmsm.edu.pe:20.500.12672/8895
network_acronym_str UNMS
network_name_str UNMSM-Tesis
repository_id_str 410
dc.title.none.fl_str_mv Framework usando un componente de preprocesamiento y MARS para la predicción de ventas en las pymes del Perú
title Framework usando un componente de preprocesamiento y MARS para la predicción de ventas en las pymes del Perú
spellingShingle Framework usando un componente de preprocesamiento y MARS para la predicción de ventas en las pymes del Perú
Berto Castro, Felix Ricardo
Microempresas
Predicciones
Pronóstico de ventas
Ventas - Procesamiento de datos
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Framework usando un componente de preprocesamiento y MARS para la predicción de ventas en las pymes del Perú
title_full Framework usando un componente de preprocesamiento y MARS para la predicción de ventas en las pymes del Perú
title_fullStr Framework usando un componente de preprocesamiento y MARS para la predicción de ventas en las pymes del Perú
title_full_unstemmed Framework usando un componente de preprocesamiento y MARS para la predicción de ventas en las pymes del Perú
title_sort Framework usando un componente de preprocesamiento y MARS para la predicción de ventas en las pymes del Perú
author Berto Castro, Felix Ricardo
author_facet Berto Castro, Felix Ricardo
author_role author
dc.contributor.advisor.fl_str_mv León Fernández, Cayo Víctor
dc.contributor.author.fl_str_mv Berto Castro, Felix Ricardo
dc.subject.none.fl_str_mv Microempresas
Predicciones
Pronóstico de ventas
Ventas - Procesamiento de datos
topic Microempresas
Predicciones
Pronóstico de ventas
Ventas - Procesamiento de datos
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Se propone un framework utilizando un componente de pre-procesamiento y MARS para obtener una predicción de ventas de forma precisa y confiable reduciendo el tiempo y costos. Para ello lo primero que se realizo fue obtener las ventas mensuales de los productos “Resorte Toy Corolla” y “Resorte Toy Corolla Gasol” de una empresa llamada “Franco” dedicada a la venta de autopartes, luego se procesó esta información con un componente de pre-procesamiento en donde se detectó y elimino valores atípicos. Posteriormente se seleccionó las variables de predicción y la variable objetivo, por último se construyó los modelos de predicción y se calculó las medidas de error con la ayuda del software “Salford Predictive Modeler 8.0“. Luego de realizar las pruebas se llegó a la conclusión que el framework propuesto se ajusta mejor a las necesidades de una pyme ya que se obtiene predicciones de ventas más precisas. Por otro lado no es necesario que el usuario sea un experto ni que tenga conocimientos muy avanzados con respecto a las técnicas o métodos de predicción, porque cuando usamos el software “Salford Predictive Modeler 8.0”, esta misma selecciona las variables de predicción más importantes y crea el modelo de predicción con sus respectivas funciones base además también se encarga del cálculo de las medidas de error.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-20T20:40:51Z
dc.date.available.none.fl_str_mv 2018-11-20T20:40:51Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.citation.none.fl_str_mv Berto, F. (2018). Framework usando un componente de preprocesamiento y MARS para la predicción de ventas en las pymes del Perú. [Tesis de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería de Sistemas e Informática, Escuela Profesional de Ingeniería de Sistemas]. Repositorio institucional Cybertesis UNMSM.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12672/8895
identifier_str_mv Berto, F. (2018). Framework usando un componente de preprocesamiento y MARS para la predicción de ventas en las pymes del Perú. [Tesis de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería de Sistemas e Informática, Escuela Profesional de Ingeniería de Sistemas]. Repositorio institucional Cybertesis UNMSM.
url https://hdl.handle.net/20.500.12672/8895
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos
dc.source.none.fl_str_mv Universidad Nacional Mayor de San Marcos
Repositorio de Tesis - UNMSM
reponame:UNMSM-Tesis
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str UNMSM-Tesis
collection UNMSM-Tesis
bitstream.url.fl_str_mv https://cybertesis.unmsm.edu.pe/bitstreams/1f37db70-49e1-40d1-af16-76ee3020ed9b/download
https://cybertesis.unmsm.edu.pe/bitstreams/e518e7df-9586-4b05-a7ab-5d48e7b8ac9b/download
https://cybertesis.unmsm.edu.pe/bitstreams/a120ab5a-96d0-4ccf-995c-06c4c036b3b5/download
https://cybertesis.unmsm.edu.pe/bitstreams/2139462d-5ebd-4423-99ad-bb6c648649ae/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
e42ebd94f57bf83782dfe3a54d28cf07
22b205c1f0813f992ae5f7da0bf24f79
17bb67a00dfd49169cf8399eae6dd2ec
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Cybertesis UNMSM
repository.mail.fl_str_mv cybertesis@unmsm.edu.pe
_version_ 1841544052816740352
spelling León Fernández, Cayo VíctorBerto Castro, Felix Ricardo2018-11-20T20:40:51Z2018-11-20T20:40:51Z2018Berto, F. (2018). Framework usando un componente de preprocesamiento y MARS para la predicción de ventas en las pymes del Perú. [Tesis de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería de Sistemas e Informática, Escuela Profesional de Ingeniería de Sistemas]. Repositorio institucional Cybertesis UNMSM.https://hdl.handle.net/20.500.12672/8895Se propone un framework utilizando un componente de pre-procesamiento y MARS para obtener una predicción de ventas de forma precisa y confiable reduciendo el tiempo y costos. Para ello lo primero que se realizo fue obtener las ventas mensuales de los productos “Resorte Toy Corolla” y “Resorte Toy Corolla Gasol” de una empresa llamada “Franco” dedicada a la venta de autopartes, luego se procesó esta información con un componente de pre-procesamiento en donde se detectó y elimino valores atípicos. Posteriormente se seleccionó las variables de predicción y la variable objetivo, por último se construyó los modelos de predicción y se calculó las medidas de error con la ayuda del software “Salford Predictive Modeler 8.0“. Luego de realizar las pruebas se llegó a la conclusión que el framework propuesto se ajusta mejor a las necesidades de una pyme ya que se obtiene predicciones de ventas más precisas. Por otro lado no es necesario que el usuario sea un experto ni que tenga conocimientos muy avanzados con respecto a las técnicas o métodos de predicción, porque cuando usamos el software “Salford Predictive Modeler 8.0”, esta misma selecciona las variables de predicción más importantes y crea el modelo de predicción con sus respectivas funciones base además también se encarga del cálculo de las medidas de error.TesisspaUniversidad Nacional Mayor de San MarcosPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Universidad Nacional Mayor de San MarcosRepositorio de Tesis - UNMSMreponame:UNMSM-Tesisinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMMicroempresasPrediccionesPronóstico de ventasVentas - Procesamiento de datoshttps://purl.org/pe-repo/ocde/ford#2.02.04Framework usando un componente de preprocesamiento y MARS para la predicción de ventas en las pymes del Perúinfo:eu-repo/semantics/bachelorThesisSUNEDUIngeniero de SistemasUniversidad Nacional Mayor de San Marcos. Facultad de Ingeniería de Sistemas e Informática. Escuela Profesional de Ingeniería de SistemasTitulo ProfesionalIngeniería de Sistemas07001405https://orcid.org/0000-0003-1704-8214https://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://cybertesis.unmsm.edu.pe/bitstreams/1f37db70-49e1-40d1-af16-76ee3020ed9b/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALBerto_cf.pdfBerto_cf.pdfapplication/pdf2815441https://cybertesis.unmsm.edu.pe/bitstreams/e518e7df-9586-4b05-a7ab-5d48e7b8ac9b/downloade42ebd94f57bf83782dfe3a54d28cf07MD53TEXTBerto_cf.pdf.txtBerto_cf.pdf.txtExtracted texttext/plain102652https://cybertesis.unmsm.edu.pe/bitstreams/a120ab5a-96d0-4ccf-995c-06c4c036b3b5/download22b205c1f0813f992ae5f7da0bf24f79MD56THUMBNAILBerto_cf.pdf.jpgBerto_cf.pdf.jpgGenerated Thumbnailimage/jpeg14554https://cybertesis.unmsm.edu.pe/bitstreams/2139462d-5ebd-4423-99ad-bb6c648649ae/download17bb67a00dfd49169cf8399eae6dd2ecMD5720.500.12672/8895oai:cybertesis.unmsm.edu.pe:20.500.12672/88952024-08-15 23:03:13.914https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://cybertesis.unmsm.edu.peCybertesis UNMSMcybertesis@unmsm.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 12.8608675
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).