Caracterización del espacio de Grothendieck

Descripción del Articulo

Presenta una caracterización de los subconjuntos débilmente compactos del espacio de los operadores compactos-definir el espacio de Grothendieck y dar una condición necesaria y suficiente para que un espacio de Banach sea un espacio de Grothendieck. A lo largo de este trabajo se estudiarán de manera...

Descripción completa

Detalles Bibliográficos
Autor: Vigo Esqueche, Marco Antonio
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/18414
Enlace del recurso:https://hdl.handle.net/20.500.12672/18414
Nivel de acceso:acceso abierto
Materia:Espacios de Banach
Algebra de operadores
https://purl.org/pe-repo/ocde/ford#1.01.01
Descripción
Sumario:Presenta una caracterización de los subconjuntos débilmente compactos del espacio de los operadores compactos-definir el espacio de Grothendieck y dar una condición necesaria y suficiente para que un espacio de Banach sea un espacio de Grothendieck. A lo largo de este trabajo se estudiarán de manera detallada los conceptos de operadores adjuntos, compactos y débilmente compactos. En este sentido, entre los teoremas más importantes relacionados con dichos tipos de operadores destacan el teorema de Schauder, que señala que un operador lineal T es compacto si y solamente si su adjunto (T*) es compacto, y el teorema de Gantmacher, el cual es el equivalente al teorema de Schauder, pero en el contexto de los operadores débilmente compactos.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).