Caracterización mecánica, física - química de fibra sansevieria trifasciata, como posible refuerzo en un compuesto de matriz poliéster

Descripción del Articulo

ABSTRACT The great biodiversity that exists in Peru and its climate, produce a sort of natural greenhouse that allow the development of various indigenous agricultural crops interesting for the international market, many of which have already achieved position and some are missing to do so. Peru is...

Descripción completa

Detalles Bibliográficos
Autor: Vega Anticona, Alexander Yushepy
Formato: tesis doctoral
Fecha de Publicación:2019
Institución:Universidad Nacional de Trujillo
Repositorio:UNITRU-Tesis
Lenguaje:español
OAI Identifier:oai:dspace.unitru.edu.pe:20.500.14414/12887
Enlace del recurso:https://hdl.handle.net/20.500.14414/12887
Nivel de acceso:acceso abierto
Materia:Biodiversidad
Ingeniería
Investigación
Potencial
Descripción
Sumario:ABSTRACT The great biodiversity that exists in Peru and its climate, produce a sort of natural greenhouse that allow the development of various indigenous agricultural crops interesting for the international market, many of which have already achieved position and some are missing to do so. Peru is a world exporter of protein and nutritional species; however another segment of great potential is that of fibrous plants, which are found in the valleys of the coast, altitudes of the Andes and the Amazon rainforest; being the third largest country in South America, Peru has 7.6 million hectares with agricultural potential, of which 4 million remain to be developed by FAO. Peru owns 84 of the 117 known life zones in the world and 11 natural eco-regions, which makes it possible to produce a diversified portfolio not only of food but also of plants for the purpose of industrialization in sectors such as construction, automotive and of mass consumption, with production possibilities throughout the year; in this way, the employment of this sector and the quality of life of farmers could be improved; all the mentioned does not do more than to motivate the interest in the possibility of use of the natural resources applied to the engineering, in particular the potential of use of the vegetal fibers; Thus, for the development of the present research, the effect of fiber weight percentage (25, 30 and 35%), concentration (% w / v) of NaOH (10, 15 and 20%) of the mercerization process was evaluated. the concentration of silane coupling agent (Trimetoxivinilsilano - 1.0 and 2.0% v / v), on the chemical modification, roughness and hydrophilicity of lignocellulosic fibers, in addition to the unidirectional tensile and tensile strengths of the thermoset matrix composites, reinforced by the fiber mentioned. The lignocellulosic fiber evaluated was called Sansevieria trifasciata, which was obtained by immersion and decomposition in water. The mercerization time was 30 minutes, the silanization stage was 1 hour (fibers previously mercerized to 20% NaOH). The fibers were used to obtain polyester matrix compounds according to the aforementioned percentages by weight, by means of the compression molding process (20.68 MPa), the laminates obtained by this process were 200x150x5 mm; once the laminates were obtained they were machined in order to develop the Charpy impact tests (ISO 179-1) and the unidirectional tensile test (ASTM D638-1); the laminates obtained were continuous unidirectional fibers. The fibers used were characterized by optical and scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), swelling%, cellulose quantification, lignin and hemicellulose. From the obtained compounds improved tensile strength and impact resistance properties were obtained in the cases where surface chain treatment (mercerization - silanization) was carried out; In addition, an increase in the aforementioned properties was obtained proportionally to the increase in the weight percentage of fibers used. The tensile strength was improved from 60.40 MPa (Without surface treatments), up to 121.08 MPa (Mercerized 20% NaOH-Silanized 2%) to 35% by weight of fibers. The impact resistance was improved from 28.8 KJ/m2 (Without surface treatments), up to 68.1 KJ/m2 (Mercerized 20% NaOH-Silanized 2%) with 35% by weight of fibers. The increase in the weight percentage of fibers in the evaluated range has allowed the increase of the tensile strength in 29.3%, and the resistance to impact in 91%. The increase in the concentration of NaOH in the mercerization process led to a reduction in fiber sections (15.06%), an increase in fiber roughness, a reduction in Lignin (from 27.78 to 25.98%); Cellulose increase (44.65 to 50.68%). The increase of the percentage of agent of coupling (Trimetoxivinilsilano) evaluated, of the process of silanización, generated small changes in the percentages of Lignin and Cellulose of the fibers, maintained the roughness achieved in the previous stage of mercerization
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).