Machine learning y discriminación de la carne de pulpo (Octopus mimus) y calamar gigante (Dosidicus gigas) usando imágenes hiperespectrales
Descripción del Articulo
El pulpo es altamente susceptible al fraude por sustitución con otros cefalópodos de menor valor comercial, principalmente con calamar gigante, lo cual atenta contra el bienestar y la satisfacción de los consumidores, de modo que, es necesario contar con métodos rápidos, efectivos y de preferencia n...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Nacional de Frontera |
| Repositorio: | UNFS-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.unf.edu.pe:UNF/123 |
| Enlace del recurso: | http://repositorio.unf.edu.pe/handle/UNF/123 |
| Nivel de acceso: | acceso abierto |
| Materia: | Fraude alimentario cefalópodos Aprendizaje automático Imágenes hiperespectrales http://purl.org/pe-repo/ocde/ford#2.11.01 |
| Sumario: | El pulpo es altamente susceptible al fraude por sustitución con otros cefalópodos de menor valor comercial, principalmente con calamar gigante, lo cual atenta contra el bienestar y la satisfacción de los consumidores, de modo que, es necesario contar con métodos rápidos, efectivos y de preferencia no invasivos, como la técnica de las imágenes hiperespectrales acopladas a herramientas de machine learning, para detectar esta práctica ilegal. Por tanto; el objetivo de esta investigación fue determinar si existe efecto en la aplicación de la técnica de machine learning sobre la discriminación de la carne de pulpo (Octopus mimus) y calamar gigante (Dosidicus gigas) usando perfiles espectrales. Se recolectaron muestras frescas de ambas especies en el puerto de Paita; se seleccionaron los brazos, por ser la parte de mayor similitud, a los cuales se les despojó la piel y se cortaron en trozos de 1.0 cm de longitud aproximadamente, obteniéndose 300 trozos por especie, divididos equitativamente para obtener muestras frescas, congeladas y cocidas. Las imágenes hiperespectrales se obtuvieron por reflectancia, en el rango espectral de 400-1000 nm., luego se segmentaron las imágenes para obtener los perfiles medios y se probaron modelos de machine learning para evaluar su rendimiento en base a los estadísticos de precisión y medida f-2. Los cálculos se realizaron en el software Matlab 2019a, aplicando 30 repeticiones y validación cruzada (K-fold = 5). Los resultados evidenciaron alto nivel de precisión para los modelos de Análisis Discriminante Lineal (Accuracy 99.9 %, Medida F-2 99.94%) y Maquinas de Vectores de Soporte (Accuracy 99.1 %, Medida F-2 99.06 %). Se concluye que existe efecto en la técnica de machine learning sobre la discriminación de la carne de pulpo y calamar gigante usando perfiles espectrales, con tasas de éxito de hasta 99.9%. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).