Machine learning y discriminación de la carne de pulpo (Octopus mimus) y calamar gigante (Dosidicus gigas) usando imágenes hiperespectrales

Descripción del Articulo

El pulpo es altamente susceptible al fraude por sustitución con otros cefalópodos de menor valor comercial, principalmente con calamar gigante, lo cual atenta contra el bienestar y la satisfacción de los consumidores, de modo que, es necesario contar con métodos rápidos, efectivos y de preferencia n...

Descripción completa

Detalles Bibliográficos
Autor: Vera Jimenez, William Daniel
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad Nacional de Frontera
Repositorio:UNFS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unf.edu.pe:UNF/123
Enlace del recurso:http://repositorio.unf.edu.pe/handle/UNF/123
Nivel de acceso:acceso abierto
Materia:Fraude alimentario
cefalópodos
Aprendizaje automático
Imágenes hiperespectrales
http://purl.org/pe-repo/ocde/ford#2.11.01
Descripción
Sumario:El pulpo es altamente susceptible al fraude por sustitución con otros cefalópodos de menor valor comercial, principalmente con calamar gigante, lo cual atenta contra el bienestar y la satisfacción de los consumidores, de modo que, es necesario contar con métodos rápidos, efectivos y de preferencia no invasivos, como la técnica de las imágenes hiperespectrales acopladas a herramientas de machine learning, para detectar esta práctica ilegal. Por tanto; el objetivo de esta investigación fue determinar si existe efecto en la aplicación de la técnica de machine learning sobre la discriminación de la carne de pulpo (Octopus mimus) y calamar gigante (Dosidicus gigas) usando perfiles espectrales. Se recolectaron muestras frescas de ambas especies en el puerto de Paita; se seleccionaron los brazos, por ser la parte de mayor similitud, a los cuales se les despojó la piel y se cortaron en trozos de 1.0 cm de longitud aproximadamente, obteniéndose 300 trozos por especie, divididos equitativamente para obtener muestras frescas, congeladas y cocidas. Las imágenes hiperespectrales se obtuvieron por reflectancia, en el rango espectral de 400-1000 nm., luego se segmentaron las imágenes para obtener los perfiles medios y se probaron modelos de machine learning para evaluar su rendimiento en base a los estadísticos de precisión y medida f-2. Los cálculos se realizaron en el software Matlab 2019a, aplicando 30 repeticiones y validación cruzada (K-fold = 5). Los resultados evidenciaron alto nivel de precisión para los modelos de Análisis Discriminante Lineal (Accuracy 99.9 %, Medida F-2 99.94%) y Maquinas de Vectores de Soporte (Accuracy 99.1 %, Medida F-2 99.06 %). Se concluye que existe efecto en la técnica de machine learning sobre la discriminación de la carne de pulpo y calamar gigante usando perfiles espectrales, con tasas de éxito de hasta 99.9%.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).