ESPACIOS VECTORIALES. Espacios Vectoriales. Propiedades. Subespacios. Suma y suma directa de subespacios. Combinación lineal de vectores y subespacios generados. Dependencia e Independencia lineal. Bases y dimensión de un espacio vectorial. Coordenadas. Espacio Cociente. Transformaciones lineales. Teorema del núcleo e imagen de las transformaciones lineales. Epistemología y didáctica de los espacios vectoriales y la resolución de problemas en la Física y otras disciplinas
Descripción del Articulo
El objetivo de este trabajo de investigación recoger las bases teóricas y práctica para comprender la relación de los aspectos geométricos y algebraicos. La monografía está dividida en tres partes: En la parte I, se presenta, los aspectos preliminares donde se precisan y diferencian los conceptos de...
| Autor: | |
|---|---|
| Fecha de Publicación: | 2019 |
| Institución: | Universidad Nacional de Educación Enrique Guzmán y Valle |
| Repositorio: | UNE-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.une.edu.pe:20.500.14039/7010 |
| Enlace del recurso: | https://repositorio.une.edu.pe/handle/20.500.14039/7010 |
| Nivel de acceso: | acceso abierto |
| Materia: | Rendimiento académico http://purl.org/pe-repo/ocde/ford#1.01.00 |
| Sumario: | El objetivo de este trabajo de investigación recoger las bases teóricas y práctica para comprender la relación de los aspectos geométricos y algebraicos. La monografía está dividida en tres partes: En la parte I, se presenta, los aspectos preliminares donde se precisan y diferencian los conceptos de ley de composición interna y ley de composición externa, luego se presentan los axiomas que definen la estructura de grupo y de cuerpo que son importantes para el estudio de los espacios vectoriales. Con base en estos conceptos, en la parte II, se explican los conceptos de espacios vectoriales, subespacios vectoriales, combinaciones lineales, espacios generados, dependencia e independencia lineal, base y dimensión de los espacios vectoriales; así como también en la parte III, se presentan las transformaciones lineales. Para ayudar en la comprensión de los conceptos, se incluyen ejemplos y contraejemplos; y además las pruebas de las propiedades. La investigación sobre los espacios vectoriales es muy importante por el hecho de establecerse vínculos con un sinnúmero de temas de la Matemática y de la Física. Por esta razón, proponemos su estudio introductorio en la educación secundaria y bachillerato, al llegar a nivel superior el estudiante ya estará familiarizado con el tema. Esperamos que esta propuesta sea un aporte para que más adelante otros investigadores la profundicen y la difundan. Y para concluir, se presenta la parte de la medicación docente, síntesis, apreciación crítica y sugerencias, y referencias. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).