EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING

Descripción del Articulo

BACKGROUND: TO EVALUATE THE PERFORMANCE OF DIFFERENT PREDICTION MODELS BASED ON MACHINE LEARNING TO PREDICT THE PRESENCE OF EARLY CHILDHOOD CARIES. MATERIAL AND METHODS: CROSS-SECTIONAL ANALYTICAL STUDY. THE SOCIODEMOGRAPHIC AND CLINICAL DATA USED CAME FROM A SAMPLE OF 186 CHILDREN AGED 3 TO 6 YEARS...

Descripción completa

Detalles Bibliográficos
Autores: BLANCO-VICTORIO, DANIEL JOSÉ, LÓPEZ-RAMOS, ROXANA PATRICIA, BLANCO-RODRIGUEZ, JOHAN DANIEL, LÓPEZ-LUJÁN, NIEVES ASTERIA, LEÓN-UNTIVEROS, GINA FIORELLA, SICCHA-MACASSI, ANA LUCY
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional del Callao
Repositorio:UNAC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unac.edu.pe:20.500.12952/9847
Enlace del recurso:https://hdl.handle.net/20.500.12952/9847
Nivel de acceso:acceso abierto
Materia:ARTIFICIAL INTELLIGENCE, CARIES, CARIES PREDICTION, EARLY CHILDHOOD CARIES, MACHINE LEARNING
https://purl.org/pe-repo/ocde/ford#5.03.01
Descripción
Sumario:BACKGROUND: TO EVALUATE THE PERFORMANCE OF DIFFERENT PREDICTION MODELS BASED ON MACHINE LEARNING TO PREDICT THE PRESENCE OF EARLY CHILDHOOD CARIES. MATERIAL AND METHODS: CROSS-SECTIONAL ANALYTICAL STUDY. THE SOCIODEMOGRAPHIC AND CLINICAL DATA USED CAME FROM A SAMPLE OF 186 CHILDREN AGED 3 TO 6 YEARS AND THEIR RESPECTIVE PARENTS OR GUARDIANS TREATED AT A HOSPITAL IN ICA, PERU. THE DATABASE WITH SIGNIFICANT VARIABLES WAS LOADED INTO THE ORANGE DATA MINING SOFTWARE TO BE PROCESSED WITH DIFFERENT PREDICTION MODELS BASED ON MACHINE LEARNING. TO EVALUATE THE PERFORMANCE OF THE PREDICTION MODELS, THE FOLLOWING INDICATORS WERE USED: PRECISION, RECALL, F1-SCORE AND ACCURACY. THE DISCRIMINATORY POWER OF THE MODEL WAS DETERMINED BY THE VALUE OF THE ROC CURVE. RESULTS: 76.88% OF THE CHILDREN EVALUATED HAD CAVITIES. THE SUPPORT VECTOR MACHINE (SVM) AND NEURAL NETWORK (NN) MODELS OBTAINED THE BEST PERFORMANCE VALUES, SHOWING SIMILAR VALUES OF ACCURACY, F1-SCORE AND RECALL (0.927, 0.950 AND 0.974; RESPECTIVELY). THE PROBABILITY OF CORRECTLY DISTINGUISHING A CHILD WITH ECC WAS 90.40% FOR THE SVM MODEL AND 86.68% FOR THE NN MODEL. CONCLUSIONS: THE MACHINE LEARNING-BASED CARIES PREDICTION MODELS WITH THE BEST PERFORMANCE WERE SUPPORT VECTOR MACHINE (SVM) AND NEURAL NETWORKS (NN). © MEDICINA ORAL S. L. C.I.F. B 96689336 - EISSN: 1989–5488
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).