Characterization of climatological time series using autoencoders
Descripción del Articulo
Common problems in climatological time series data are high dimensionality, correlation between the sequential values and noise due to calibration of meteorological stations influencing dramatically in the quality of clustering, classification, climate pattern finding and data processing. One way to...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2017 |
Institución: | Universidad La Salle |
Repositorio: | ULASALLE-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulasalle.edu.pe:20.500.12953/29 |
Enlace del recurso: | http://repositorio.ulasalle.edu.pe/handle/20.500.12953/29 |
Nivel de acceso: | acceso restringido |
Materia: | Research Subject Categories::TECHNOLOGY |
id |
ULSA_d05ad032fb8f8274b7d28e8b6042dc41 |
---|---|
oai_identifier_str |
oai:repositorio.ulasalle.edu.pe:20.500.12953/29 |
network_acronym_str |
ULSA |
network_name_str |
ULASALLE-Institucional |
repository_id_str |
3920 |
dc.title.es_ES.fl_str_mv |
Characterization of climatological time series using autoencoders |
title |
Characterization of climatological time series using autoencoders |
spellingShingle |
Characterization of climatological time series using autoencoders Alfonte Zapana, Reynaldo Research Subject Categories::TECHNOLOGY Research Subject Categories::TECHNOLOGY |
title_short |
Characterization of climatological time series using autoencoders |
title_full |
Characterization of climatological time series using autoencoders |
title_fullStr |
Characterization of climatological time series using autoencoders |
title_full_unstemmed |
Characterization of climatological time series using autoencoders |
title_sort |
Characterization of climatological time series using autoencoders |
author |
Alfonte Zapana, Reynaldo |
author_facet |
Alfonte Zapana, Reynaldo López Del Alamo, Cristian Llerena Quenaya, Jan Franco Cuadros Valdivia, Ana María |
author_role |
author |
author2 |
López Del Alamo, Cristian Llerena Quenaya, Jan Franco Cuadros Valdivia, Ana María |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Alfonte Zapana, Reynaldo López Del Alamo, Cristian Llerena Quenaya, Jan Franco Cuadros Valdivia, Ana María |
dc.subject.es_ES.fl_str_mv |
Research Subject Categories::TECHNOLOGY |
topic |
Research Subject Categories::TECHNOLOGY Research Subject Categories::TECHNOLOGY |
dc.subject.ocde.es_ES.fl_str_mv |
Research Subject Categories::TECHNOLOGY |
description |
Common problems in climatological time series data are high dimensionality, correlation between the sequential values and noise due to calibration of meteorological stations influencing dramatically in the quality of clustering, classification, climate pattern finding and data processing. One way to deal with this problem is through feature extraction technique. In order to extract features from large climatological time series data, we propose a feature extraction method based on autoencoder neural network (AUTOE). As a first step, time series is standardized. Then, different architectures of autoencoder is applied on it to reduce dimensionality. Finally, k-means clustering algorithm are used to evaluate them through quality measures. As a result, autoencoder performs well and is competitive with other feature extraction techniques over Synthetic Control Chart Time Series. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2018-11-21T17:09:28Z |
dc.date.available.none.fl_str_mv |
2018-11-21T17:09:28Z |
dc.date.issued.fl_str_mv |
2017-11-08 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.es_ES.fl_str_mv |
@INPROCEEDINGS{8285717, author={R. A. Zapana and C. Lopez del Alamo and J. F. L. Quenaya and A. M. C. Valdivia}, booktitle={2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)}, title={Characterization of climatological time series using autoencoders}, year={2017}, volume={}, number={}, pages={1-6}, keywords={climatology;control charts;feature extraction;geophysics computing;meteorology;neural nets;pattern clustering;time series;common problems;climatological time series data;high dimensionality;climate pattern;data processing;feature extraction technique;feature extraction method;autoencoder neural network;Synthetic Control Chart Time Series;autoencoders;AUTOE;Time series analysis;Feature extraction;Discrete wavelet transforms;Discrete cosine transforms;Dimensionality reduction;Meteorology;Dimensionality reduction;autoencoder;time series}, doi={10.1109/LA-CCI.2017.8285717}, ISSN={}, month={Nov},} |
dc.identifier.isbn.none.fl_str_mv |
978-1-5386-3734-0 |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.ulasalle.edu.pe/handle/20.500.12953/29 |
dc.identifier.journal.es_ES.fl_str_mv |
2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI) |
dc.identifier.doi.es_ES.fl_str_mv |
10.1109/LA-CCI.2017.8285717 |
identifier_str_mv |
@INPROCEEDINGS{8285717, author={R. A. Zapana and C. Lopez del Alamo and J. F. L. Quenaya and A. M. C. Valdivia}, booktitle={2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)}, title={Characterization of climatological time series using autoencoders}, year={2017}, volume={}, number={}, pages={1-6}, keywords={climatology;control charts;feature extraction;geophysics computing;meteorology;neural nets;pattern clustering;time series;common problems;climatological time series data;high dimensionality;climate pattern;data processing;feature extraction technique;feature extraction method;autoencoder neural network;Synthetic Control Chart Time Series;autoencoders;AUTOE;Time series analysis;Feature extraction;Discrete wavelet transforms;Discrete cosine transforms;Dimensionality reduction;Meteorology;Dimensionality reduction;autoencoder;time series}, doi={10.1109/LA-CCI.2017.8285717}, ISSN={}, month={Nov},} 978-1-5386-3734-0 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI) 10.1109/LA-CCI.2017.8285717 |
url |
http://repositorio.ulasalle.edu.pe/handle/20.500.12953/29 |
dc.language.iso.eng_US.fl_str_mv |
eng |
language |
eng |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.publisher.es_ES.fl_str_mv |
Universidad La Salle |
dc.source.es_ES.fl_str_mv |
Universidad La Salle Repositorio institucional - ULASALLE |
dc.source.none.fl_str_mv |
reponame:ULASALLE-Institucional instname:Universidad La Salle instacron:ULASALLE |
instname_str |
Universidad La Salle |
instacron_str |
ULASALLE |
institution |
ULASALLE |
reponame_str |
ULASALLE-Institucional |
collection |
ULASALLE-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/29/1/link_articulo.txt http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/29/2/license.txt http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/29/3/link_articulo.txt.txt |
bitstream.checksum.fl_str_mv |
d8f83f401daa19fb8d691f44a0e197ac 8a4605be74aa9ea9d79846c1fba20a33 ff7e1448e009c4bcbdbb6665899403b2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad La Salle |
repository.mail.fl_str_mv |
repositorio@ulasalle.edu.pe |
_version_ |
1764532734512857088 |
spelling |
Alfonte Zapana, ReynaldoLópez Del Alamo, CristianLlerena Quenaya, Jan FrancoCuadros Valdivia, Ana María2018-11-21T17:09:28Z2018-11-21T17:09:28Z2017-11-08@INPROCEEDINGS{8285717, author={R. A. Zapana and C. Lopez del Alamo and J. F. L. Quenaya and A. M. C. Valdivia}, booktitle={2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)}, title={Characterization of climatological time series using autoencoders}, year={2017}, volume={}, number={}, pages={1-6}, keywords={climatology;control charts;feature extraction;geophysics computing;meteorology;neural nets;pattern clustering;time series;common problems;climatological time series data;high dimensionality;climate pattern;data processing;feature extraction technique;feature extraction method;autoencoder neural network;Synthetic Control Chart Time Series;autoencoders;AUTOE;Time series analysis;Feature extraction;Discrete wavelet transforms;Discrete cosine transforms;Dimensionality reduction;Meteorology;Dimensionality reduction;autoencoder;time series}, doi={10.1109/LA-CCI.2017.8285717}, ISSN={}, month={Nov},}978-1-5386-3734-0http://repositorio.ulasalle.edu.pe/handle/20.500.12953/292017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)10.1109/LA-CCI.2017.8285717Common problems in climatological time series data are high dimensionality, correlation between the sequential values and noise due to calibration of meteorological stations influencing dramatically in the quality of clustering, classification, climate pattern finding and data processing. One way to deal with this problem is through feature extraction technique. In order to extract features from large climatological time series data, we propose a feature extraction method based on autoencoder neural network (AUTOE). As a first step, time series is standardized. Then, different architectures of autoencoder is applied on it to reduce dimensionality. Finally, k-means clustering algorithm are used to evaluate them through quality measures. As a result, autoencoder performs well and is competitive with other feature extraction techniques over Synthetic Control Chart Time Series.Trabajo de investigaciónDoble ciegoengUniversidad La Salleinfo:eu-repo/semantics/restrictedAccessUniversidad La SalleRepositorio institucional - ULASALLEreponame:ULASALLE-Institucionalinstname:Universidad La Salleinstacron:ULASALLEResearch Subject Categories::TECHNOLOGYResearch Subject Categories::TECHNOLOGYCharacterization of climatological time series using autoencodersinfo:eu-repo/semantics/articleORIGINALlink_articulo.txtlink_articulo.txttext/plain45http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/29/1/link_articulo.txtd8f83f401daa19fb8d691f44a0e197acMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/29/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTlink_articulo.txt.txtlink_articulo.txt.txtExtracted texttext/plain45http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/29/3/link_articulo.txt.txtff7e1448e009c4bcbdbb6665899403b2MD5320.500.12953/29oai:repositorio.ulasalle.edu.pe:20.500.12953/292021-06-11 14:39:34.132Repositorio Institucional de la Universidad La Sallerepositorio@ulasalle.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.971837 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).