A visual analytics approach for exploration of high-dimensional time series based on neighbor-joining tree

Descripción del Articulo

High-dimensional time series analysis through visual techniques poses many challenges due to the visualization solutions proposed until now for exploratory tasks are not well-oriented to high volume of data. When the data sets grow large, the visual alternatives do not allow for a good association b...

Descripción completa

Detalles Bibliográficos
Autores: Rodriguez Urquiaga, Roberto, Cuadros Valdivia, Ana María, Alfonte Zapana, Reynaldo
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad La Salle
Repositorio:ULASALLE-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulasalle.edu.pe:20.500.12953/25
Enlace del recurso:http://repositorio.ulasalle.edu.pe/handle/20.500.12953/25
Nivel de acceso:acceso restringido
Materia:Research Subject Categories::TECHNOLOGY
Descripción
Sumario:High-dimensional time series analysis through visual techniques poses many challenges due to the visualization solutions proposed until now for exploratory tasks are not well-oriented to high volume of data. When the data sets grow large, the visual alternatives do not allow for a good association between similar time series. With the aim to increase more alternatives, we introduce a visual analytic approach based on Neighbor-Joining similarity tree. The proposed approach internally consists of five time series dimension reduction techniques widely used, two well-known similarity measures and interaction mechanisms to do exploratory analysis of high-dimensional time series data interactively.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).