1
artículo
Publicado 2018
Enlace
Enlace
High-dimensional time series analysis through visual techniques poses many challenges due to the visualization solutions proposed until now for exploratory tasks are not well-oriented to high volume of data. When the data sets grow large, the visual alternatives do not allow for a good association between similar time series. With the aim to increase more alternatives, we introduce a visual analytic approach based on Neighbor-Joining similarity tree. The proposed approach internally consists of five time series dimension reduction techniques widely used, two well-known similarity measures and interaction mechanisms to do exploratory analysis of high-dimensional time series data interactively.
2
tesis de maestría
Publicado 2018
Enlace
Enlace
En este trabajo se propone visualizar la evolución temática de corpus de documentos usando Neighbor joining tree (NJT). Para poder lograr esto es necesario extraer vectores característicos que conserven una fecha probabilista aproximada, además conservar su informacián temática. Para este fin se utilizó trabajos previos como CITATION-Latent Dirichlet Allocation (CITATION-LDA) que posee la ventaja de conservar la información antes mencionada, haciendo uso de las citas bibliográficas como vector característico para la extracción del tema. Mediante probabilidad es posible obtener una fecha aproximada del tópico analizado, esto gracias a que cada elemento del vector característico es un documento que posee una fecha de publicación. Esto se uso para construir el mapa visual a través del algoritmo Neighbor joining tree antes usado para la construcción de árboles filogenéticos...
3
tesis de maestría
Publicado 2018
Enlace
Enlace
En este trabajo se propone visualizar la evolución temática de corpus de documentos usando Neighbor joining tree (NJT). Para poder lograr esto es necesario extraer vectores característicos que conserven una fecha probabilista aproximada, además conservar su informacián temática.