Characterization of climatological time series using autoencoders

Descripción del Articulo

Common problems in climatological time series data are high dimensionality, correlation between the sequential values and noise due to calibration of meteorological stations influencing dramatically in the quality of clustering, classification, climate pattern finding and data processing. One way to...

Descripción completa

Detalles Bibliográficos
Autores: Alfonte Zapana, Reynaldo, López Del Alamo, Cristian, Llerena Quenaya, Jan Franco, Cuadros Valdivia, Ana María
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad La Salle
Repositorio:ULASALLE-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulasalle.edu.pe:20.500.12953/29
Enlace del recurso:http://repositorio.ulasalle.edu.pe/handle/20.500.12953/29
Nivel de acceso:acceso restringido
Materia:Research Subject Categories::TECHNOLOGY
Descripción
Sumario:Common problems in climatological time series data are high dimensionality, correlation between the sequential values and noise due to calibration of meteorological stations influencing dramatically in the quality of clustering, classification, climate pattern finding and data processing. One way to deal with this problem is through feature extraction technique. In order to extract features from large climatological time series data, we propose a feature extraction method based on autoencoder neural network (AUTOE). As a first step, time series is standardized. Then, different architectures of autoencoder is applied on it to reduce dimensionality. Finally, k-means clustering algorithm are used to evaluate them through quality measures. As a result, autoencoder performs well and is competitive with other feature extraction techniques over Synthetic Control Chart Time Series.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).